UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN - TACNA

Facultad de Ciencias de la Salud

Escuela Profesional de Farmacia y Bioquímica

ESTUDIO COMPARATIVO DEL EFECTO HIPOLIPEMIANTE DE LAS SEMILLAS DE CHIA BLANCA Y DE CHIA NEGRA (*Salvia hispánica* L.), EN RATAS ALBINAS (*Rattus norvegicus* Wistar) CON DISLIPIDEMIA INDUCIDA

TESIS

Presentada por:

BACH. KAREN DEL ROCÍO MAMANI ORELLANA

Para optar el Título Profesional de:

QUÍMICO FARMACÉUTICO

TACNA - PERÚ

2016
UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN
Facultad de Ciencias de la Salud
Escuela Profesional de Farmacia y Bioquímica

ESTUDIO COMPARATIVO DEL EFECTO HIPOLIPEMIANTE DE
LAS SEMILLAS DE CHIA BLANCA Y DE CHIA NEGRA
(Salvia hispánica L.), EN RATAS ALBINAS
(Rattus norvegicus Wistar) CON DISLIPIDEMIA INDUCIDA

TESIS
Presentada por:
BACH. KAREN DEL ROCIO MAMANI ORELLANA
Para optar el Titulo Profesional de
QUÍMICO FARMACÉUTICO

Q.F. Edgárd Guido Calderón Copa
Presidente

Q.F. Orlande Agustín Rivera Benavente
Miembro

Q.F. Juan Carlos Efrain Cervantes Zegarra
Miembro

Mgr. Yemile Del Carmen Berrios Espejo
Asesora
DEDICATORIA

A Dios, por darme la vida, por darme la oportunidad de cumplir mis sueños, por ser fuente de sabiduría.

A mi madre y a mi abuelita Isabel, quienes de una u otra forma siempre estuvieron a mi lado, con quienes compartí horas y momentos inolvidables y que siempre me animaron en mis momentos de cansancio.
AGRADECIMIENTO

A la Facultad de Ciencias de la Salud, Escuela de Bioquímica y Farmacia por acogerme en sus prestigiosas aulas y por sus conocimientos impartidos.

De manera muy especial a la Mgr. Q.F. Yemile Berrios Espejo y Mgr. Q.F. Giselle Delgado Montoya, por su valiosa colaboración y asesoramiento en este trabajo investigativo.

A mi familia por haber brindado un ambiente de alegría, amor, fuerza, en donde pude desarrollar las mejores cualidades a las que aspira todo ser humano.
ÍNDICE

RESUMEN .. xiv
ABSTRACT .. xv
INTRODUCCIÓN .. 1
CAPÍTULO I .. 4
PLANTEAMIENTO DEL PROBLEMA ... 4
 1.1 FUNDAMENTOS Y FORMULACIÓN DEL PROBLEMA ... 4
 1.2 OBJETIVOS ... 7
 1.2.1. Objetivo General .. 7
 1.2.2. Objetivos Específicos ... 7
 1.3 HIPÓTESIS ... 8
 1.3.1. Hipótesis General ... 8
 1.3.2. Hipótesis Específicas ... 8
 1.4 OPERACIONALIZACIÓN DE VARIABLES .. 9
 1.4.1 Variable Independiente: .. 9
 1.4.2 Variable Dependiente: ... 9
 1.5 JUSTIFICACIÓN ... 12
CAPÍTULO II ... 14
MARCO TEÓRICO .. 14
 2.1 ANTECEDENTES DE LA INVESTIGACIÓN ... 14
 2.2 CHÍA ... 18
2.2.1. Antecedentes Históricos .. 18
2.2.2. Taxonomía ... 19
2.2.3. Morfología ... 20
2.2.4 Ubicación Geográfica .. 20
2.2.5. Hábitat y características de Cultivo 21
2.2.6. Propiedades alimenticias ... 23
2.2.7. Toxicidad ... 25
2.2.8. Variedades de Semillas: Chía Blanca y Chía Negra 25
2.2.9. Importancia de las Plantas Medicinales 28
2.3 LÍPIDOS .. 28
2.3.1. Principales Lípidos Plasmáticos: .. 29
2.3.2. Lipoproteínas ... 30
 2.3.2.1. Lipoproteínas de muy Baja Densidad, (C – VLDL): 30
 2.3.2.2. Lipoproteínas de Densidad Intermedia, (C-IDL): 31
 2.3.2.3. Lipoproteínas de Baja Densidad, (C-LDL): 31
 2.3.2.4. Lipoproteínas de Alta Densidad, (C-HDL): 32
2.3.3 Rutas Metabólicas del Colesterol Hepático 32
 2.3.3.1. Esterificación de Colesterol, Actividad ACAT 33
 2.3.3.2. Modificaciones de la Composición Lipídica de Membranas
 Microsomales y Actividad Enzimática 36
 2.3.3.3. Otras Vías de Utilización del Colesterol Hepático 37
3.4.2. Observación Directa ... 59

3.5 MÉTODOS ... 60

3.5.1. Preparación de la Dieta Hiperlipidémica o Hipercalórica 60
3.5.2. Preparación del Tratamiento de Chía .. 62

3.5.3. Marcha Fitoquímica .. 63

3.5.3.1. Taninos: Ensayo de Tricloruro Férreo .. 64
3.5.3.2. Proteínas: Ensayo de Biuret ... 65
3.5.3.3. Azúcares Reductores: Ensayo de Fehling A y Fehling B 66
3.5.3.4. Flavonoides: Ensayo Shinoda .. 68
3.5.3.5. Saponinas: Ensayo de Espuma ... 69

3.5.4. Estandarización de los Animales de Experimentación 70
3.5.5. Inducción de Hiperlipidemia .. 70
3.5.6. Inducción del Tratamiento de Chía .. 72
3.5.7. Obtención de Muestras Sanguíneas ... 73
3.5.8. Medición Colesterol Total y Triglicéridos 75

3.5.8.1. Determinación del Colesterol Total ... 75
3.5.8.2. Medición de Triglicéridos ... 77

3.6. ANÁLISIS ESTADÍSTICO ... 78

CAPÍTULO IV .. 80

RESULTADOS .. 80

DISCUSIÓN .. 94
CONCLUSIONES .. 108
RECOMENDACIONES ... 110
REFERENCIAS BIBLIOGRÁFICAS .. 111
ANEXOS .. 118
ÍNDICE DE TABLAS

Tabla 1: Marcha fitoquímica cualitativa de la solución de chía blanca y chía negra...80
Tabla 2: Control de calidad: aspectos organolépticos de la solución de chía blanca y chía negra ...81
Tabla 3: Efecto de la chía sobre el colesterol total en ratas albinas82
Tabla 4: Colesterol total de ratas albinas en estado basal.83
Tabla 5: Efecto de la chía sobre el colesterol total de ratas albinas a los 15 días (hiperlipídico)...84
Tabla 6: Efecto de la chía sobre el colesterol total de ratas albinas a los 30 días (dieta hipercalórica + chía).85
Tabla 7: Comparación del efecto de la chía sobre el colesterol total en ratas albinas ...86
Tabla 8: Efecto de la chía sobre triglicéridos en ratas albinas.............88
Tabla 9: Efecto de la chía sobre los triglicéridos de ratas albinas en estado basal. ...89
Tabla 10: Efecto de la chía sobre los triglicéridos de ratas albinas a los 15 días...90
Tabla 11: Efecto de la chía sobre los triglicéridos de ratas albinas a los 30 días...91
Tabla 12: Comparación del efecto de la chía sobre triglicéridos en ratas albinas ...92
ÍNDICE DE CUADROS

Cuadro 1. Composición de las Semillas de Chía por 100g de Porción
Comestible .. 24

Cuadro 2. Niveles de Lípidos Recomendados por el Adult Treatment..... 54

Cuadro 3. Dieta Hipercalórica ... 60

Cuadro 4. Modelo A (chía blanca), Modelo B (chía negra), Modelo C
 (control). .. 73

Cuadro 5. Determinación de Colesterol Total .. 76

Cuadro 6. Determinación de Triglicéridos ... 78
ÍNDICE DE FIGURAS

Figura 1. Principales regiones productoras de chía en Perú 21
Figura 2. *Salvia hispanica* L. .. 22
Figura 3. Semillas de Chía Color Negro (Izq) y Blanca (Der) 26
Figura 4. Metabolismo hepático del colesterol 33
Figura 5. Balance de colesterol a través de la célula del epitelio intestinal ... 39
Figura 6. Metabolismo del colesterol intestinal 41
Figura 7. Esquema del metabolismo de los Triglicéridos 46
Figura 8. Pellets Porción por Jaula ... 61
Figura 9. Preparado de chia Blanca (Izq.), chia Negra (Der.) 62
Figura 10. Marcha Fitoquímica Qualitativa .. 63
Figura 11. Ensayo Tricloruro Férrico ... 64
Figura 12. Ensayo de Biuret ... 66
Figura 13. Ensayo Fehling A y B ... 67
Figura 14. Ensayo Shinoda ... 68
Figura 15. Ensayo de Espuma .. 69
Figura 16. Administración del Tratamiento por Cánula Orógástrica 72
Figura 17. Extracción de muestra mediante método de Dartman 74
ÍNDICE DE GRÁFICOS

Gráfico 1. Colesterol Total de ratas albinas basal...83
Gráfico 2. Efecto de la chía sobre el colesterol total de ratas albinas a los
15 días ...84
Gráfico 3. Efecto de la chía sobre el colesterol total de ratas albinas a los
30 días. ...85
Gráfico 4. Comparación del efecto de la chía sobre el colesterol total en
ratas albinas...87
Gráfico 5. Efecto de la chía sobre los triglicéridos de ratas albinas basal89
Gráfico 6. Efecto de la chía sobre los triglicéridos de ratas albinas a los
15 días. ..90
Gráfico 7. Efecto de la chía sobre los triglicéridos de ratas albinas a los
30 días. ..91
Gráfico 8. Comparación del efecto de la chía sobre triglicéridos en ratas
albinas..93
ÍNDICE DE ANEXOS

ANEXO 1 GALERÍA FOTOGRÁFICA .. 119
ANEXO 2 MATRIZ DE CONSISTENCIA ... 123
RESUMEN

El objetivo del presente trabajo fue evaluar la capacidad hipolipemiante de las semillas de *Salvia hispánica* L. “chía”, semillas de color negro frente a la de color blanco, en un modelo de hiperlipidemia inducida utilizando como especímenes *Rattus novergicus* Wistar, de sexo masculino con peso promedio de 237 g, siendo un total de 15 especímenes, pasando por un proceso de inducción de hiperlipidemia de 15 días, medición del colesterol total y triglicéridos en estado basal, con hiperlipemia, y luego del tratamiento. Se trabajó con semillas de *Salvia hispánica* L. procedente del valle de Majes, Arequipa, encontrando la presencia de proteínas, flavonoides y saponinas. La dosis única para el tratamiento fue de 1000 mg/kg de semillas fraccionadas y disuelto en 5 ml de agua purificada por día.

Los animales tratados con las semillas de *Salvia hispánica* L. “chía” presentaron disminución en los niveles séricos de colesterol total y triglicéridos, no encontrándose una diferencia estadísticamente significativa entre ambas semillas.

Palabras clave: *Salvia hispánica* L., hipolipemiante, colesterol, triglicéridos.
ABSTRACT

The aim of this study was to assess the lipid-lowering ability of seeds of *Salvia hispánica* L. "Chia" of black color against the white color in a model of hyperlipidemia induced using as specimens male *Rattus norvegicus* Wistar, with an average weight of 237 g. being 15 specimens in total, selecting 5 for the treatment of black chia, passing by a process of hyperlipidemia induction of 15 days proceeding to have the average of total cholesterol and triglycerides in the first state, then with hyperlipidemia and at the end of the treatment. To prepare the treatment, we worked with *Salvia hispánica* L. seed from the Majes valley, Arequipa, finding the presence of proteins, tannins, flavonoids and saponins. The only doses for the treatment was 1000 mg/kg of fractionated seeds in a mortar and mixed with 5 ml. of purified water per day.

The animals treated seeds *Salvia hispanica* L. "Chia" presented a diminution in the xeric level of cholesterol and triglycerides, finding no statistically significant difference between each other.

Keywords: *Salvia hispánica* L., lipid-lowering, cholesterol, triglycerides.
INTRODUCCIÓN

La medicina natural ha adquirido mucha atención, siendo la fitoterapia una de las nuevas y potenciales alternativas que ofrece una gama de soluciones a diversos problemas de salud que son adquiridos por el estilo de vida poco saludable de las personas en nuestros días causando problemas de hiperlipidemia que desencadenan una serie de problemas de salud cada vez más serios y con consecuencias más graves.

Los fármacos utilizados para el tratamiento en la reducción del colesterol y los triglicéridos tienen costos que muchas veces no resultan accesibles a toda la población. Así también existen preparados comercializados y tratamientos naturales con plantas medicinales que afirman tener propiedades hipolipemiantes, sin embargo siguen siendo estudiados y son necesarios ensayos comparativos que demuestren su eficacia y sobre todo su seguridad, teniendo en cuenta que en la mayoría de ellos se evidencia una falta de control médico, por ser generalmente productos de consumo cotidiano.
Últimamente, uno de estos productos que ha adquirido popularidad en nuestro medio, es la semilla de chía (*Salvia hispánica* L.). Se han desencadenado una serie de afirmaciones entorno al consumo de ésta semilla y sus propiedades, ya sea a través de publicidad o información poco documentadas, o por medio de experiencias individuales que van difundiéndose colectivamente.

Existen varios estudios respecto a la semilla, que han pretendido conocer su contenido nutricional, su capacidad antioxidante, entre otras propiedades, (Ayerza R., 2012; García Gutiérrez, 2012; Pauccara Hilario, 2014).

Sin embargo, se aprecia que en la comercialización y recomendación de éste producto se hace una gran diferencia entre las semillas de color negro y de color blanco, asegurando que éstas últimas son mucho más efectivas en todos sus aspectos y contienen mayores propiedades. Así mismo, el precio de las semillas de chía blanca es aproximadamente el doble que el de chía negra, llamando esto último la atención, ya que no existe ninguna referencia anterior respecto a un estudio que valide tal diferencia.
Por lo expuesto, la presente investigación pretende demostrar a través de una experimentación in vivo, si existe una diferencia en el efecto hipolipemiante de la semilla de la Salvia hispánica L. (chía negra y blanca), usadas en medicina tradicional en problema de dislipidemia en la población.

El capítulo I, trata del fundamento y formulación del problema general y problemas específicos, así como las hipótesis que derivan de ellas; además de la operacionalización de variables, dependiente e independiente y la justificación para la realización del presente trabajo. El capítulo II trata del marco teórico, se abordan como temas principales, la planta de chía, los lípidos, rutas metabólicas del colesterol y triglicéridos y la dislipidemia. El capítulo III, describe a los materiales y la metodología empleada en la investigación, la muestra y población, así como las técnicas e instrumentos de recolección de datos. Estandarización de los animales de experimentación, medición del colesterol total y triglicéridos y el análisis estadístico de los datos obtenidos. Finalmente, en el capítulo IV se da a conocer los resultados y discusión del efecto hipolipemiante de las semillas de chía sobre el colesterol total y triglicéridos en ratas albinas.
CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1 FUNDAMENTOS Y FORMULACIÓN DEL PROBLEMA

El Estilo de vida acelerado, la facilidad de adquirir comida rápida en poco tiempo que es preparada con alto contenido calórico, la falta de actividad física y el avance de tecnologías que permiten mayor tiempo frente a un computador, han influido de manera considerable en la mala alimentación de las personas de todas las edades y clases sociales, y esto a corto y largo plazo, genera diversos problemas de salud.

En la actualidad, los fármacos utilizados para el tratamiento del colesterol y los triglicéridos elevados tienen costos que muchas veces no resultan accesibles a toda la población. Así mismo, existen preparados comercializados y tratamientos naturales con plantas medicinales que poseen propiedades hipolipemiantes, en este caso algunos de ellos con resultados prometedores, siguen siendo
estudiados y son necesarios ensayos comparativos que demuestren su eficacia y sobre todo su seguridad, teniendo en cuenta que en la mayoría de ellos se evidencia una falta de control médico.

Para cumplir nuestro objetivo se comparará el efecto hipolipemiante de las semillas de chía blanca y negra en animales de experimentación (ratas) con dislipidemia inducida, administrándose por vía oral, por ser la vía usada comúnmente para este fin. El presente estudio trata de demostrar si existe una diferencia en el efecto hipolipemiante entre las semillas de *Salvia hispanica* L. (chía negra y blanca), usadas en medicina tradicional a las cuales se le confiere diversas propiedades, entre ellas, el efecto hipolipemiante.

Por lo expuesto, se plantean los siguientes problemas de investigación:

PROBLEMA PRINCIPAL:

¿Existe diferencia en su efecto hipolipemiante entre las semillas de chía blanca y negra (*Salvia hispánica* L.) frente a la dislipidemia inducida en ratas albinas (*Rattus novergicus* Wistar)?
PROBLEMAS SECUNDARIOS:

• ¿Es posible inducir hiperlipidemia a ratas albinas?

• ¿Hay presencia de metabolitos secundarios en semillas de chía negra y chía blanca?

• ¿Tendrá efecto hipolipemiante las semillas de chía blanca frente a dislipidemia?

• ¿Tendrá efecto hipolipemiante las semillas de chía negra frente a dislipidemia?

• ¿Existe diferencia estadísticamente significativa en el efecto hipolipemiante de la chía blanca y negra frente a la dislipidemia inducida en ratas albinas a la misma dosis?
1.2 OBJETIVOS

1.2.1. Objetivo General

Comparar el efecto hipolipemiante de las semillas de chía (Salvia hispánica L.) blanca y negra, en ratas albinas (Rattus norvegicus Wistar) frente a la dislipidemia inducida.

1.2.2. Objetivos Específicos

1. Inducir hiperlipidemia a ratas albinas.
2. Realizar una marcha fitoquímica para identificar la presencia de metabolitos secundarios en semillas de chía negra y chía blanca.
3. Determinar el efecto hipolipemiante de las semillas de chía blanca, frente a la dislipidemia.
4. Determinar el efecto hipolipemiante de las semillas de chía negra, frente a la dislipidemia.
5. Determinar estadísticamente la diferencia significativa en el efecto hipolipemiante de la chía blanca y negra frente a la dislipidemia inducida en ratas albinas a la misma dosis.

1.3 HIPÓTESIS

1.3.1. Hipótesis General

- Existe diferencia en el efecto hipolipemiante frente a la dislipidemia inducida en ratas albinas (*Rattus novergicus* Wistar), entre la chía blanca y la chía negra.

1.3.2. Hipótesis Específicas

- Se indujo hiperlipidemia en ratas albinas.
- Se identificó satisfactoriamente la presencia de metabolitos secundarios en semillas de chía negra y chía blanca.
- Existe un moderado efecto hipolipemiante de las semillas de chía blanca, frente a dislipidemia.
- Existe un leve efecto hipolipemiante de las semillas de chía negra, frente a dislipidemia.
- Existe diferencia estadísticamente significativa entre el efecto hipolipemiante de la chía blanca y negra a una misma dosis.

1.4 OPERACIONALIZACIÓN DE VARIABLES.

1.4.1 Variable Independiente:

- Semillas de chía blanca y negra.

1.4.2 Variable Dependiente:

- Efecto hipolipemiante
<table>
<thead>
<tr>
<th>VARIABLES INDEPENDIENTES</th>
<th>DEFINICIÓN OPERACIONAL</th>
<th>DEFINICIÓN CONCEPTUAL</th>
<th>INDICADORES</th>
<th>ESCALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semillas de Chía blanca y negra</td>
<td>Se seleccionaron semillas cultivadas en el valle de Majes, Arequipa, en sus variedades, tomándose como dose 1000 mg/kg de peso por día.</td>
<td>Semillas de Chía Blanca (Salvia hispanica L.) blanca, trituradas manualmente con un mortero y diluidas en 5 ml de agua purificada, administradas por vía oral a los animales de experimentación.</td>
<td>Dosis</td>
<td>Razón, con el valor de 0 absoluto para realizar operaciones aritméticas y de lógica.</td>
</tr>
<tr>
<td>Semillas trituradas de Chía negra, diluidas en agua purificada, administradas por vía oral a los animales de experimentación</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La dosis empleada fue de 1000 mg/kg de peso por día.
<table>
<thead>
<tr>
<th>VARIABLE DEPENDIENTE</th>
<th>DEFINICIÓN CONCEPTUAL</th>
<th>DEFINICIÓN OPERACIONAL</th>
<th>DIMENSIÓN</th>
<th>INDICADORES</th>
<th>ESCALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTO HIPOLIPEMIANTE</td>
<td>Se entiende por hipolipemiante a cualquier sustancia fármacológicamente activa que tenga la propiedad de disminuir los niveles de lípidos en sangre.</td>
<td>Inducción de hiperlipidemia experimental durante 15 días de administración de una dieta hipercalórica por las mañanas a una hora establecida. Se extrajo muestra sanguínea en ayunas (1,0 ml aprox.) mediante punción capilar a nivel del ángulo interno del ojo, y depositados en tubos de microcentrífuga. Con la primera muestra se obtuvo el valor basal (mg/dl) en sangre de CT y TG.</td>
<td>Colesterol Total Registro de niveles séricos de CT en suero.</td>
<td>mg/dl</td>
<td>Razón Cuenta con el valor de 0 absoluto para realizar operaciones aritméticas y de lógica. Triglicéridos Registro de niveles séricos de TG en suero.</td>
</tr>
</tbody>
</table>
1.5 JUSTIFICACIÓN

Se pretende determinar si existe una diferencia en el efecto hipolipemiant entre las semillas blancas y negras de la *Salvia hispanica* L. (chía), que nos permitirá ofrecer una alternativa importante en el enfoque tradicional del tratamiento de dislipidemias en la población y promover el diseño del ensayo clínico derivado del presente estudio, así como esclarecer si es adecuada la sobrevaloración de las semillas de Chía Blanca que existe actualmente en el comercio local basándonos en el problema de dislipidemia.

El MINSA, en el año 2013, informa según encuestas, señaló que la prevalencia de hipercolesterolemia se presenta aproximadamente en un 30,6 % de la población peruana. La prevalencia de hipertrigliceridemia y de colesterol elevado afecta aproximadamente al 28,3 %. La prevalencia de hipercolesterolemia es mayor en mujeres que en varones, sin embargo no existen diferencias según sexo en la prevalencia de trigliceridemia. Todos estos problemas se incrementan con la edad, siendo los más afectados los pobladores mayores de 50 años. La prevalencia de
hipercolesterolemia es significativamente mayor en la región Costa y Lima Metropolitana en comparación a la baja prevalencia en las regiones Sierra Rural y Selva. En cuanto a hipertrigliceridemia se encuentra una mayor prevalencia en la región Selva. La región que presenta menos incidencia de éstos problemas es la Sierra Rural, (MINSA, 2013).

Por las razones antes mencionadas, se consideró a la *Salvia hispánica* L. (chía) para el presente estudio, por ser una especie que destaca por sus múltiples propiedades terapéuticas además de cultivarse abundantemente actualmente en nuestro país. Buscamos de esta manera, revalorizar el uso de plantas medicinales de nuestro medio, brindando un aporte técnico científico adecuado a la Medicina Tradicional y Complementaria.
CAPÍTULO II

MARCO TEÓRICO

2.1 ANTECEDENTES DE LA INVESTIGACIÓN

En la Universidad de Arizona, Ricardo Ayerza (2012), realizó el “Estudio de composición de dos genotipos de Chía (Salvia hispánica L.), que se diferencian en el color de la semilla”, cuyo objetivo fue investigar el efecto del color de la semilla en aceite, proteína, fibra, aminoácidos y composición, contenido de antioxidantes de dos genotipos de chía (Salvia hispánica L.). Se realizó el estudio usando los genotipos de chía conocidos como Tzotzol e Iztac; siendo la primera la semilla negra y la segunda la semilla blanca, en este estudio se explica la pequeña diferencia genética entre estos dos genotipos, teniendo como resultados una escasa diferencia entre ambas, (Ayerza; Estudio de la Composición de dos genotipos de Chía que se diferencian en el color de la semilla, 2012).
En la Universidad Católica de Santa María, de la ciudad de Arequipa, Tania Pauccara Hilario (2014), realizó la tesis “Evaluación del efecto hipolipemiante de los extractos de la semillas de *Salvia hispánica* L., administrado en animales de experimentación y determinación de la capacidad antioxidante in vitro”, cuyo objetivo fue observar la actividad antioxidante in vitro, de semillas de chía, con identificación por cromatografía en capa fina y evidenciar el efecto hipolipemiante de las semillas de color negro comparándolo con el gemfibrozilo; donde determinó que el disolvente con mejor actividad sobre el perfil lipídico elevado fue el alcohol etílico. Así mismo, que dicho extracto etanólico, produjo una disminución en los niveles de Colesterol Total y Triglicéridos estadísticamente similares con el gemfibrozilo.

En la Escuela Nacional de Ciencias Biológicas, Santo Tomas, México. D.F., Salgado Cruz, et.al.(2010), realizaron el trabajo “Estudio de las Propiedades Funcionales de la Semilla de Chía (*Salvia hispánica* L.) y de la Fibra Dietaria”, en el cual midieron la cantidad de aceite presente en semillas de chía cultivadas en cinco lugares diferentes. Se determinó el contenido de ácidos grasos linolénico, linoleico, oleico, palmítico y esteárico, en el aceite de chía, por medio
de análisis cromatográfico. El resultado de dicho estudio, evidencia la diferencia en la cantidad de ácidos grasos que presentan las semillas de chía según el lugar de cultivo.

En el Instituto Politécnico, Escuela Nacional de Ciencias Biológicas de la Ciudad de México D.F., la Magister Gretel García Gutierrez (2012), en la investigación: “Estudio de la capacidad antioxidante in vitro y del efecto anticancerígeno de la semilla de Chía (Salvia hispánica L.)”, cuyo objetivo fue determinar la capacidad antioxidante, el efecto preventivo ante el desarrollo de una dislipidemia y al desarrollo de lesiones pre-carcinogénicas, administrando diferentes preparaciones de chía (semilla entera, harina desgrasada y aceite de chía) a un grupo de Ratas Wistar macho cuyo resultado fue positivo para la capacidad antioxidante, además de encontrar importantes concentraciones de compuestos fenólicos como la quercetina y el kaempferol, además de ácido cafécico y clorogénico, que son poderosos antioxidantes.

En la Universidad de Tucson, Arizona, Ricardo Ayerza, et.al. (2007) se publicó el artículo “Effect of Dietary \(\alpha\)-Linolenic Fatty Acid Derived from Chia when Fed as Ground Seed, Whole Seed and Oil on
Lipid Content and Fatty Acid Composition of Rat Plasma", producto de su trabajo de investigación en donde se sometió a Ratas Wistar a una alimentación *ad libitum* con cuatro diferentes tipos de dietas, una de ellas en base a aceite de maíz, y el resto de semillas de chía enteras, semillas de chía molidas y aceite de chía por 30 días. Posteriormente se observaron incrementos en el nivel de ácido eicosapentaenoico (EPA). Se observaron también disminuciones estadísticamente significativas en triglicéridos e incrementos en colesterol HDL.

En la Universidad de Tarapacá, Chile, Pizarro Waisle (2013), realizó la investigación titulada: “El Efecto de la fecha de siembra en el rendimiento en Semillas de la Chía en el Valle de Azapa”, donde señala ciertos parámetros adecuados para el cultivo de la especie *Salvia hispánica* L.

Por todos los antecedentes mencionados, el presente trabajo aborda el tema de la comparación y diferenciación de las variedades de las semillas de chía en cuanto a su efecto hipolipemiente, por lo cual reúne las condiciones metodológicas y temáticas suficientes para ser considerado como una investigación.
2.2 CHÍA

2.2.1. Antecedentes Históricos

La semilla de chía empezó a ser usada para la alimentación humana en la época precolombina, alrededor del año 3500 a.c, y toma importancia por ser uno de los cultivos básicos en el centro de México y América Central entre los años 1500 y 900 a.c.

El uso de la semilla y sus subproductos se remonta a la época de los Mayas y los Aztecas, quienes empleaban la semilla como alimento, medicina, ofrenda a los dioses y materia prima para producir un aceite que era empleado como base en pinturas decorativas y ungüentos cosméticos.

La harina tostada, otro de sus subproductos, era utilizada para la elaboración de una popular bebida nutritiva denominada “Chía fresca” (agua, limón, chía). Su cultivo solo sobrevivió en las áreas montañosas de México y Guatemala y a finales del siglo pasado, el interés por la chía resurgió por
considerarla buena fuente de Omega-3, fibra alimentaria, proteína y antioxidantes, (Coates, 2011).

2.2.2. Taxonomía

La chía, *Salvia hispánica* L, es una especie que pertenece a la familia de aromáticas como la menta, el tomillo, el romero y el orégano (Ixtaina, Vanessa Y., 2010), y cuya clasificación taxonómica es:

<table>
<thead>
<tr>
<th>Reino</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subreino</td>
<td>Tracheobionta</td>
</tr>
<tr>
<td>División</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Clase</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Subclase</td>
<td>Asteridae</td>
</tr>
<tr>
<td>Orden</td>
<td>Lamiales</td>
</tr>
<tr>
<td>Familia</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td>Género</td>
<td>Salvia</td>
</tr>
<tr>
<td>Especia</td>
<td>Salvia hispanica L.</td>
</tr>
<tr>
<td>Nombre común</td>
<td>Chía, chian, tzotzol, izard</td>
</tr>
</tbody>
</table>
2.2.3. **Morfología**

Su planta tiene una altura entre un 1,0 y 1,5 metros, y sus tallos son ramificados, de sección cuadrangular con pubescencias cortas y blancas. Las hojas opuestas con bordes aserrados miden de 80 a 100 cm de longitud, y 40 a 60 mm de ancho. Sus flores de color azul intenso o blancas se producen en espigas terminales, las semillas son ovales, suaves, brillantes y miden entre 1,5 y 2,0 mm de longitud, (R. Ayerza, Wayne Coates, 2006).

2.2.4 **Ubicación Geográfica**

La chía se encuentra naturalmente en áreas de bosque de encino o de pinoencino y se distribuye en ambientes semicálidos y templados. Actualmente, su cultivo se ha extendido por zonas tropicales y subtropicales de Sudamérica, en altitudes entre 1400 y 2200 m.s.n.m. Históricamente, esta especie ha sido cultivada en áreas libres de heladas y en regiones con heladas anuales, desde el nivel del mar hasta los 2500 msnm, (Ayerza y Coates, 2005).
En nuestro país las principales regiones productoras son Arequipa y Cusco, concentrando el 98,5 % de la producción nacional, convirtiéndose en las principales regiones productoras de semillas de chía.

Figura 1. Principales regiones productoras de chía en Perú

<table>
<thead>
<tr>
<th>Número de hectáreas.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arequipa</td>
<td>172 ha</td>
</tr>
<tr>
<td>Cusco</td>
<td>101 ha</td>
</tr>
<tr>
<td>Otros</td>
<td>4 ha</td>
</tr>
</tbody>
</table>

2.2.5. Hábitat y características de Cultivo

La chía es un cultivo que crece en condiciones tropicales y subtropicales y no es tolerante a las heladas (R. Ayerza, Wayne Coates, 2006).

En cuanto a las condiciones en las que se desarrolla, favorecen su crecimiento la disponibilidad de una amplia variedad de niveles de nutrientes y humedad, ésta última sobre

Figura 2. Salvia hispánica L.

2.2.6. Propiedades alimenticias

La semilla de chía tiene una composición química de un 20 % de proteína, un 25 % de fibra alimentaria y el contenido de aceite presente en la semilla de chía es de alrededor de 33 %, el cual presenta el mayor porcentaje de ácido α-linoléico (Omega 3) conocido hasta el momento (62 – 64 %), (Ayerza, Wayne, & Coates, 2008).

Es una buena fuente de vitamina B, calcio, fósforo, potasio, zinc y cobre. Es una fuente de omega 3, que elimina la necesidad de utilizar antioxidantes artificiales como las vitaminas. De ésta poseen una enorme ventaja sobre todas las demás fuentes de ácidos grasos omega 3, ya que permiten que pueda almacenarse por años, sin que se deteriore el sabor, el olor o el valor nutritivo. Su alto contenido en fibra (33,6 %), permite aumentar el volumen del bolo fecal que transita por el tubo digestivo, lo que se debe principalmente a su capacidad para absorber agua; regula los movimientos intestinales, evitando el estreñimiento, la diverticulosis y el cáncer de colon, (R. Ayerza, Wayne Coates, 2006).
Cuadro 1. Composición de las Semillas de Chía por 100g de Porción Comestible

<table>
<thead>
<tr>
<th>NUTRIENTE</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>g</td>
<td>4,0</td>
</tr>
<tr>
<td>Energía</td>
<td>Kcal</td>
<td>330</td>
</tr>
<tr>
<td>Proteína</td>
<td>g</td>
<td>17,1</td>
</tr>
<tr>
<td>Lipido TOTAL (grasa)</td>
<td>g</td>
<td>32,8</td>
</tr>
<tr>
<td>Alfa linolénico</td>
<td>g</td>
<td>20,34</td>
</tr>
<tr>
<td>Linoléico</td>
<td>g</td>
<td>6,66</td>
</tr>
<tr>
<td>Oleico</td>
<td>g</td>
<td>2,36</td>
</tr>
<tr>
<td>Esteárico</td>
<td>g</td>
<td>0,95</td>
</tr>
<tr>
<td>Palmitico</td>
<td>g</td>
<td>2,13</td>
</tr>
<tr>
<td>Carbohidratos por diferencia</td>
<td>g</td>
<td>41,8</td>
</tr>
<tr>
<td>Fibra total, dietaria</td>
<td>g</td>
<td>29,0</td>
</tr>
<tr>
<td>MINERALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcio, Ca</td>
<td>mg</td>
<td>870</td>
</tr>
<tr>
<td>Magnesio, Mg</td>
<td>mg</td>
<td>466</td>
</tr>
<tr>
<td>Fósforo, P</td>
<td>mg</td>
<td>922</td>
</tr>
<tr>
<td>Potasio, K</td>
<td>mg</td>
<td>890</td>
</tr>
<tr>
<td>Sodio, Na</td>
<td>mg</td>
<td>2</td>
</tr>
<tr>
<td>Zinc, Zn</td>
<td>mg</td>
<td>7,4</td>
</tr>
<tr>
<td>Cobre, Cu</td>
<td>mg</td>
<td>2,45</td>
</tr>
<tr>
<td>Manganeso, Mn</td>
<td>mg</td>
<td>5,85</td>
</tr>
<tr>
<td>VITAMINAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiamina (B1)</td>
<td>mg</td>
<td>0,144</td>
</tr>
<tr>
<td>Riboflavina (B2)</td>
<td>mg</td>
<td>0,213</td>
</tr>
<tr>
<td>Niacina (B3)</td>
<td>mg</td>
<td>8,250</td>
</tr>
<tr>
<td>Vitamina A</td>
<td>Ul</td>
<td>4300</td>
</tr>
<tr>
<td>LIPIDOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total ácidos grasos saturados</td>
<td>g</td>
<td>3,08</td>
</tr>
<tr>
<td>Factor ácido total monoinsaturados</td>
<td>g</td>
<td>2,42</td>
</tr>
<tr>
<td>ANTIOXID ANTES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido cafeico NO hidrolizado</td>
<td>mol</td>
<td>0,66 x 10^-3</td>
</tr>
<tr>
<td>Acido clorogénico</td>
<td>mol</td>
<td>0,71 x 10^-3</td>
</tr>
<tr>
<td>Miricetina</td>
<td>mol</td>
<td>0,31 x 10^-3</td>
</tr>
<tr>
<td>Quercetina</td>
<td>mol</td>
<td>0,02 x 10^-3</td>
</tr>
<tr>
<td>Kaempferol</td>
<td>mol</td>
<td>0,11 x 10^-3</td>
</tr>
<tr>
<td>Acido cafeico hidrolizado</td>
<td>mol</td>
<td>1,35 x 10^-3</td>
</tr>
<tr>
<td>AMINOACIDOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanina</td>
<td>g/100 g de proteína</td>
<td>4,4</td>
</tr>
<tr>
<td>Arginina</td>
<td>g/100 g de proteína</td>
<td>9,9</td>
</tr>
<tr>
<td>Acido aspático</td>
<td>g/100 g de proteína</td>
<td>7,5</td>
</tr>
<tr>
<td>Cistina</td>
<td>g/100 g de proteína</td>
<td>1,5</td>
</tr>
<tr>
<td>Acido glutámico</td>
<td>g/100 g de proteína</td>
<td>15,0</td>
</tr>
<tr>
<td>Glicina</td>
<td>g/100 g de proteína</td>
<td>4,2</td>
</tr>
<tr>
<td>Histidina</td>
<td>g/100 g de proteína</td>
<td>2,6</td>
</tr>
<tr>
<td>Isoluecina</td>
<td>g/100 g de proteína</td>
<td>3,2</td>
</tr>
<tr>
<td>Leucina</td>
<td>g/100 g de proteína</td>
<td>5,6</td>
</tr>
<tr>
<td>Licina</td>
<td>g/100 g de proteína</td>
<td>4,4</td>
</tr>
<tr>
<td>Metionina</td>
<td>g/100 g de proteína</td>
<td>0,4</td>
</tr>
<tr>
<td>Fenilalanina</td>
<td>g/100 g de proteína</td>
<td>4,8</td>
</tr>
<tr>
<td>Prolina</td>
<td>g/100 g de proteína</td>
<td>4,4</td>
</tr>
<tr>
<td>Serina</td>
<td>g/100 g de proteína</td>
<td>4,4</td>
</tr>
<tr>
<td>Treonina</td>
<td>g/100 g de proteína</td>
<td>3,4</td>
</tr>
<tr>
<td>Valina</td>
<td>g/100 g de proteína</td>
<td>5,2</td>
</tr>
</tbody>
</table>

2.2.7. Toxicidad

No se encontraron registros sobre intoxicaciones y efectos indeseables en personas, (Korhonen, 2009).

2.2.8. Variedades de Semillas: Chía Blanca y Chía Negra

Según la variedad, su color puede ser blanco o negro grisáceo, con manchas irregulares semejándose a un color rojo oscuro. La polinización es entomófila, (Hernández Gómez & Miranda Colín, 2008).

Hasta el momento se desconoce las razones de la presencia de las diferentes pigmentaciones. Las semillas de chía son realmente moteadas tonos de marrones, grises y negros o blancos, grises y amarillos, de ahí los nombres de semillas negras de chía y semillas de chía blanca.

Las semillas de chía negra son más comunes, pero hay mucha controversia alrededor de cuál de las semillas son
nutricionalmente superiores. Si bien en gran escala, la investigación independiente no se ha llevado a cabo, ya que no sería rentable, los investigadores y los productores están de acuerdo en que las semillas de chía negra y semillas de chía blanca son nutricionalmente iguales. En todo caso, una diferencia en el contenido nutricional tiende más atribuirse a diferentes centros de producción en lugar de las propias semillas, (Ayerza, Wayne, & Coates, 2008).

Figura 3. Semillas de Chía Color Negro (Izq) y Blanca (Der)

En cuanto a la denominación de cada variedad, ésta lleva el nombre que le atribuye cada región de siembra, ya que hasta el momento no hay una nomenclatura botánica universal y/o oficial para la semilla de color negra, blanca y marrón. Como ejemplo: Manuel Orozco y Berra menciona dos
variedades: la chianpitzáhuac, negra, y la chianpatláhuac, blanca. Así también el Dr. Ricardo Ayerza, en sus estudios denomina a los genotipos de chía como Tzotzol e Iztac; siendo la primera la semilla negra y la semilla blanca la segunda, (Ayerza, 2012).

Todas las variedades de chía que se siembran actualmente en el mundo han tenido su origen en Acatic, Jalisco, y es una mezcla de semillas de color negro en un 90 % y de semillas blancas en un 10 % aproximadamente, (Bolivia, 2013).

Una posible diferencia entre las semillas blancas y negras está mucho más relacionada con el área de cultivo y la diferencia de clima. Las semillas inmaduras son de color amarillo o marrón y contienen menos minerales, proteínas, vitaminas y ácidos grasos omega-3, (Hernández Gómez & Miranda Colín, 2008).
2.2.9. Importancia de las Plantas Medicinales

Las plantas medicinales son aquellas utilizadas para aliviar, calmar o curar los males de la humanidad desde los tiempos remotos. Hoy en día se reportan numerosos descubrimientos científicos que confirman el enorme potencial curativo que posee el mundo vegetal por sus principios activos con acción farmacológica, ya sea beneficiosa o dañina, para el organismo vivo siendo su acción aliviar o remediar el dolor. A partir de estos avances hoy encontramos extractos de plantas medicinales en forma capsula, tabletas y otras formas, (Alonso, 1992), (Arroyo, 2000).

2.3 LÍPIDOS

Los lípidos, son un grupo heterogéneo de biomoléculas insolubles en agua, pero solubles en solventes orgánicos (éter, cloroformo y otros), se consumen en forma de aceite, mantecas, grasas y margarinas.
Los lípidos son componentes fundamentales de la dieta, aportan energía necesaria para desarrollar las actividades propias del organismo y las derivadas de la actividad física, representan reserva energética del organismo (alrededor de 100 000 kilocalorías para un adulto promedio), son almacenados en forma de tejido graso. Además participan en la regulación metabólica (hormonas, vitaminas, prostaglandinas, etc.), y son importantes componentes de las membranas, (Rosa M. Charamunt Vallespi, 2013).

2.3.1. Principales Lípidos Plasmáticos:

Los principales lípidos del plasma humano son:

- Colesterol
- Ésteres de colesterol
- Triglicéridos
- Fosfolípidos
- Ácidos Grasos no esterificados, (Pacheco Leal, 2004).
2.3.2. Lipoproteínas

Para transportarse en el torrente sanguíneo, el colesterol es llevado en paquetes, llamados lipoproteínas, que están compuestos de grasa (lípidos) en su interior y proteínas en su exterior.

2.3.2.1. Lipoproteínas de muy Baja Densidad, (C – VLDL):

Sintetizan gran cantidad de triglicéridos endógenos, transportan también colesterol tanto de síntesis propia como procedentes de la dieta; se metabolizan en dos etapas que implican su transformación en lipoproteínas de densidad intermedia (C-IDL), las cuales se convierten en lipoproteínas de baja densidad (C-LDL) y la lipoproteína lipasa (LPL) hidroliza los triglicéridos de la C-VLDL, hace que los ácidos grasos y el glicerol estén disponibles para los tejidos y transforman las C-VLDL en C-IDL, de menor tamaño y menor densidad y más enriquecidas en
esteres de colesterol y apoproteínas E (ApoE), (Pacheco Leal, 2004).

2.3.2.2. Lipoproteínas de Densidad Intermedia, (C-IDL):

 Pueden seguir diferentes caminos; una proporción es captada en el plasma probablemente por los receptores para las C-LDL mediante un proceso dependiente de la actividad de la LPL, que requiere la hidrólisis del exceso de triglicéridos y fosfolípidos, y de la transferencia del exceso de apoproteínas a las C-HDL, (Pacheco Leal, 2004).

2.3.2.3. Lipoproteínas de Baja Densidad, (C-LDL):

 Son de menor tamaño y mayor densidad que la C- VLDL, contiene una única apoproteína, y la fracción lipídica más abundante es el colesterol esterificado. Dado que la C-LDL transporta dos terceras partes del colesterol circulante en el plasma, estas partículas son
las principales proveedoras de colesterol al hígado y a los demás tejidos del organismo, (Pacheco Leal, 2004).

2.3.2.4. Lipoproteínas de Alta Densidad, (C-HDL):

Transporta colesterol de otras partes del organismo de nuevo al hígado donde es removido. (Pacheco Leal, D. 2004).

2.3.3 Rutas Metabólicas del Colesterol Hepático

El colesterol hepático de fuente endógena (síntesis) o exógena (lipoproteínas circulantes) puede sufrir los siguientes procesos:

- Ser almacenado intracelularmente como colesterol esterificado.
- Excretarse en bilis.
- Incorporarse a la síntesis de lipoproteínas.
• Formar parte de las membranas celulares del propio hepatocito.

Figura 4. Metabolismo hepático del colesterol.

2.3.3.1. Esterificación de Colesterol, Actividad ACAT

El colesterol puede ser almacenado en la célula como éster de ácidos grasos de cadena larga, siendo la enzima responsable de esta reacción la ACAT. Ésta es una enzima microsomal, presente prácticamente en todas las células del organismo, incluido el hígado.
Como sustrato utiliza el colesterol de la misma membrana microsomal y, en cuanto a los ácidos grasos, la afinidad más alta la muestra por oléico y palmítico.

Al igual que la 3-hidroxi-3 metil glutaril Coenzima A reductasa (HMG-CoAR), la ACAT hepática presenta un ritmo circadiano paralelo al de aquella, y su actividad está regulada por un mecanismo de fosforilación/defosforilación, pero de manera inversa, pues mientras la reductasa se inactiva por fosforilación la ACAT lo hace por defosforilación.

La síntesis de ésteres de colesterol en el hígado se realiza bajo control de diversos factores. Uno de ellos parece ser la biodisponibilidad de colesterol celular. Tanto in vivo, como in vitro, se ha observado una relación directa entre actividad ACAT y biodisponibilidad de colesterol.
Otro factor que parece afectar la actividad de ésta enzima, es la composición lipídica de la membrana microsomal. La alteración de la relación fosfolípidos/colesterol de las membranas biológicas produce un cambio en la fluidez de las mismas, lo que da lugar a cambios en las actividades de las enzimas integradas en esas membranas.

También se tiene evidencia de que la composición en ácidos grasos de la membrana microsomal regula de alguna forma la actividad de ACAT. En este sentido, se ha asociado un aumento en el porcentaje de ácidos grasos poliinsaturados con un aumento en la actividad ACAT, sin alteraciones apreciables en las cantidades de colesterol en las membranas, ni en la de fosfolípidos. Otros autores asocian los cambios en la actividad ACAT con variaciones en las proporciones de ácidos grasos poliinsaturados de las series omega 3 y 6 en dichas membranas.
Por otra parte, la ACAT hepática parece estar, igualmente, bajo control de las lipoproteínas circulantes. Así, se ha comprobado que una disminución de LDL circulantes da lugar a un aumento de la actividad HMG-CoA reductasa y del número de receptores de LDL; mientras, que la actividad ACAT decaen hasta valores mínimos. Por el contrario, ante un aumento de LDL circulantes, los niveles de colesterol intracelular se elevan hasta hacer suprimir la actividad HMG-CoA reductasa y aumentar la actividad ACAT, (M.T Molina et al. 1991).

2.3.3.2. Modificaciones de la Composición Lipídica de Membra-nas Microsomas y Actividad Enzimática.

La composición media de las membranas microsomaes es de un 70 - 75 % de proteínas y alrededor de un 27 % de lípidos, siendo el 80 % de estos últimos fosfolípidos y el resto colesterol libre.
Numerosos trabajos han estudiado la relación entre la composición lipídica de las membranas microsomales y la actividad de las enzimas implicadas en el metabolismo de dichos lípidos. Entonces los cambios en la actividad ACAT producen una alteración en la composición de ácidos grasos de la membrana, (M.T Molina et al. 1991).

2.3.3.3. Otras Vías de Utilización del Colesterol Hepático

Una de las vías de eliminación hepática del colesterol es su secreción en bilis, bien como colesterol libre o como ácidos biliares.

Se sabe que el colesterol en la bilis se mantiene en solución por la acción detergente de las sales biliares, de forma que la secreción de sales biliares y colesterol parece estar acoplada. Las sales biliares se sintetizan en el hígado a partir del colesterol. Generalmente se acepta que la reacción inicial en la síntesis hepática de sales biliares es la introducción de
un grupo hidroxilo en la posición 7 del anillo de colesterol.

Otra vía de excreción, es mediante la formación y secreción de lipoproteínas (principalmente VLDL y HDL). Parece ser que la síntesis y secreción de VLDL, lipoproteína rica en triglicéridos, está estrechamente relacionada con la síntesis de colesterol y la actividad HMG-CoA reductasa. Basándose en esto se propuso que, el aumento en la síntesis de VLDL disminuiría el "pool" de colesterol hepático, cuya consecuencia inmediata era el aumento de la actividad HMG-CoA reductasa, mediante un mecanismo de retroalimentación negativo.

También, la ACAT hepática podría desempeñar un papel importante en la síntesis de lipoproteínas a partir de ásteres de colesterol, ya que la estimulación de la actividad ACAT en cultivos de hepatocitos da lugar a un aumento en la secreción de VLDL, (M.T Molina et al. 1991).
2.3.4. Metabolismo de Colesterol en el Intestino

La mucosa intestinal juega un papel importante en la regulación del metabolismo del colesterol en el organismo, debido, a que:

a) En la mucosa intestinal se produce la absorción de colesterol exógeno (de la dieta) y endógeno (colesterol biliar).

b) El intestino es el órgano más importante, después del hígado, para la biosíntesis de colesterol.

c) El enterocito secreta colesterol al sistema circulatorio en forma de lipoproteínas (quilomicrones).

Figura 5. Balance de colesterol a través de la célula del epitelio intestinal

Fuente: Stange y Dietschy, (1992).
2.3.4.1. Absorción Intestinal de Colesterol

Una de las fuentes principales de colesterol para la célula intestinal es el colesterol procedente de la dieta o de la bilis, se absorbe desde la luz intestinal mediante un proceso de difusión pasiva, por dilución en la membrana de borde en cepillo del enterocito. El colesterol esterificado que entra en el lumen intestinal, es hidrolizado, antes de ser absorbido, por la esterasa de colesterol pancreática.

Por otra parte, para la absorción de los lípidos (colesterol) es esencial la participación de las sales biliares, que en solución forman micelas, y éstas actúan englobando los monoglicéridos y ácidos grasos, junto con el colesterol manteniéndolos en suspensión.

Por otro lado, la permeabilidad pasiva de la membrana intestinal al colesterol se altera en respuesta a manipulaciones en el contenido de los distintos nutrientes de la dieta, (M.T Molina et al. 1991).
2.3.4.2. Biosíntesis del Colesterol en la Mucosa Intestinal

La actividad de la HMG-CoA reductasa intestinal, y como consecuencia la síntesis de colesterol en las células de la mucosa intestinal, viene determinada por el contenido celular de colesterol que depende de:

1) La velocidad de absorción del colesterol desde la luz intestinal (ya mencionada).
2) La captación de lipoproteínas circulantes por la membrana basal de la célula epitelial.
3) Las necesidades de colesterol que tenga la célula para formar quilomicrones y su propia estructura.

Figura 6. Metabolismo del colesterol intestinal.

Los cambios en el "pool" de sales biliares alteran la síntesis de colesterol de forma secundaria, es decir, afectando la absorción intestinal de colesterol, siendo el colesterol molecular el responsable de su propia síntesis. Otra fuente de colesterol para la célula epitelial es la captación de lipoproteínas circulantes (LDL) por la membrana basolateral. Se ha comprobado, que inhibidores de la secreción hepática de lipoproteínas producen un aumento de la actividad HMG-CoA reductasa en el intestino, que revierte con la administración intravenosa de LDL. De igual manera, en cultivos de células epiteliales se ha comprobado que las LDL suprimen la actividad reductasa intestinal. Estos estudios, ponen de manifiesto que esta actividad reductasa en la célula intestinal viene regulada por la captación de lipoproteínas circulantes. Además, pueden afectar a la actividad reductasa los cambios en las necesidades de colesterol que presente la célula para formar quilomicrones o para la propia estructura de sus membranas. El aumento en la ingestión de triglicéridos da lugar a un aumento en la síntesis de
colesterol, lo que sugiere que el colesterol sintetizado de novo podría ser utilizado para la producción de quilomicrones.

La mayor síntesis de colesterol encontrada en las células de la cripta respecto a la de las células superiores de la vellosidad, sugieren que la mayor parte del colesterol sintetizado es incorporado en las membranas de las nuevas células, contribuyendo así a la formación y maduración del epitelio intestinal.

Por último, al igual que en el hígado, la actividad HMG-CoA reductasa intestinal puede depender de cambios en la fluidez de la membrana, y aunque existe controversia en este tema, estudios sugieren que la regulación de la enzima intestinal se relaciona con el grado de saturación de los ácidos grasos de la membrana microsomal, (M.T Molina et al. 1991).
2.3.4.3. Liberación de Lipoproteínas por la Mucosa Intestinal

El enterocito libera a la linfa lipoproteínas, concretamente quilomicrones. Se ha demostrado que durante el ayuno, la mayoría del colesterol liberado por el enterocito en forma de lipoproteínas procede del hígado. Durante la absorción activa de triglicéridos se registra un aumento en la síntesis de colesterol en el enterocito, pasando éste a formar la cubierta de los quilomicrones, (M.T Molina et al. 1991).

2.3.5. Síntesis de Triglicéridos

El transporte de los lípidos entre los lugares de absorción, depósito, utilización y eliminación puede agruparse en dos grandes vías, la exógena y la endógena.
La vía exógena transporta la grasa dietética en forma de quilomicrones desde el intestino a los tejidos periféricos y al hígado durante los períodos posprandiales. La lipoproteinlipasa (LPL), localizada en el endotelio capilar, hidroliza los triglicéridos (TG) de los quilomicrones y permite la captación de los ácidos grasos libres resultantes por las células musculares y los adipocitos. Los remanentes de los quilomicrones, que contienen el colesterol de origen intestinal, son captados por receptores hepáticos gracias a la interacción con la Apo E. La vía endógena proporciona la energía necesaria a los tejidos en forma de TG durante los períodos interdigestivos y depende de la secreción hepática de lipoproteínas ricas en TG (LPRTG), las (VLDL), que también son deslipidadas por la LPL y eventualmente se convierten en lipoproteínas de baja densidad (LDL), las partículas que transportan el colesterol a los tejidos. Las HDL vehiculizan el colesterol desde los tejidos al hígado para su eliminación por la bilis (transporte reverso del colesterol). Es importante destacar que, cuanto más eficiente es la lipólisis de las LPRTG, más altas son las cifras de cHDL; esto explica la relación inversa entre la trigliceridemia y el cHDL, (Milke García 2004).
La tasa de síntesis hepática de VLDL por ensamblaje de TG, colesterol y apo B es muy variable y depende de la cantidad de ácidos grasos de que dispone el hígado, suma de los de síntesis propia (lipogénesis) y los procedentes del tejido adiposo (lipólisis). En la circulación, las VLDL son objeto de la acción de la proteína transferidora de ésteres de colesterol (CETP), que permite el intercambio de TG por ésteres de colesterol con las LDL y las HDL. Éste intercambio de lípidos ocurre también entre las propias VLDL, proceso que, en
concertación con la LPL, permite la disminución progresiva del tamaño de estas partículas y su conversión en LDL.

Cuando el proceso de deslipidación de las lipoproteínas ricas en triglicéridos - LPRTG (VLDL de origen hepático, quilomicrones de origen intestinal y remanentes resultantes) es eficiente, se mantienen una trigliceridemia y un cHDL normales, además de unas LDL con una composición adecuada para su captación por los receptores celulares específicos. Sin embargo, en condiciones de aumento de la lipogénesis (por exceso de grasa saturada, azúcares simples o alcohol en la dieta, o bien tratamiento estrogénico) o de aporte excesivo de ácidos grasos al hígado por una lipólisis periférica acentuada (como en la obesidad), la síntesis y la secreción de VLDL aumentan, lo que puede causar hipertriglicideridemia. Otra causa es una lipólisis deficiente por hipoactividad de la LPL, sea de causa genética (defectos de la LPL) o adquirida (diabetes descompensada, insuficiencia renal). Finalmente, la captación hepática de remanentes depende de una actividad apo E normal, asociada al genotipo habitual apo E3, pero hay variantes genéticas de la apo E (apo E2) que dificultan la unión
con los receptores, mientras que otras la aceleran (apo E4), (Milke García 2004).

2.3.5.1. Consecuencias del Catabolismo Ineficiente de Triglicéridos

Como se ha descrito, la CETP (proteína transferidora de ésteres de colesterol), es una enzima del plasma que actúa intercambiando lípidos entre las lipoproteínas ricas en colesterol y las LPRTG: sustrae colesterol de las LDL y HDL y lo transfiere a las VLDL a cambio de TG. Esto contribuye al correcto transporte de lípidos a sus lugares de destino cuando el metabolismo lipídico es normal. Sin embargo, cuando hay un retraso del aclaramiento de las LPRTG, la permanencia prolongada de estas partículas en el plasma favorece el intercambio, lo que tiene varias consecuencias adversas:

1. Las LDL se enriquecen en TG, lo que las convierte en un buen sustrato para la lipasa hepática, que
hidroliza los TG, formando LDL (densas y pequeñas), con un aumento relativo del contenido de apo B respecto al de colesterol; estas LDL anómalas penetran fácilmente en la pared arterial y son muy susceptibles a la oxidación, por lo que son captadas con avidez por los macrófagos y son, en definitiva, más aterogénicas que las LDL (normales).

2. Las HDL también pierden colesterol y adquieren TG, que son hidrolizados por la lipasa hepática, con reducción de HDL$_2$, las partículas eficientes en el transporte reverso del colesterol, y aumento de HDL$_3$, partículas pequeñas y pobres en colesterol con escasa capacidad antiaterogénica.

3. Las LPRTG enriquecidas en colesterol resultantes de este aumento del intercambio lipídico también son aterogénicas, ya que no se captan bien por los receptores hepáticos y sí por los macrófagos de la pared arterial.
La suma de estas alteraciones justifica la aterogenicidad de la hipertrigliceridemia y el concepto de que debe tratarse con la misma energía que la hipercolesterolemia para reducir el riesgo cardiovascular, (Milke García 2004).

2.4. PEROXIDACIÓN LIPÍDICA

La Peroxidación de lípidos se desarrolla como una reacción en cadena cuando las especies reactivas (EsR) atacan un ácido graso polinsaturado (AGP) y le arrebatan un átomo de hidrógeno al grupo metilo adyacente a la doble ligadura. Este ácido graso actúa como transportador de la reacción en cadena ya que ataca a otros AGP e inicia nuevas reacciones. Éste proceso consiste de tres estados: iniciación, propagación y terminación. Los productos finales de la peroxidación de lípidos son: aldehídos, alcoholes, ésteres y cetonas lo que provoca en la membrana celular, la pérdida de cohesión, fluidez, permeabilidad y función metabólica. Producto de esto, los productos finales de la peroxidación lipídica, son tóxicos
para la vida celular por lo que tienen que ser eliminados de manera eficiente, ((Rojas Hurtado & Martínez Palomino, 2010).

Los lipoperóxidos son producto del ataque de las especies reactivas del oxígeno (ERO o ROS) a los ácidos grasos poliinsaturados que forman parte de los fosfolípidos de la membrana celular, y a los ácidos grasos presentes en los alimentos, ocasionando en este último caso la rancidez de las grasas y por ende la alteración de los alimentos que las contienen. Cabe resaltar que la peroxidación lipídica se caracteriza por una reacción en cadena, de tal forma que cuando un lípido es alterado, este puede promover la peroxidación de los lípidos más cercanos. Los radicales libres pueden conducir al deterioro de la membrana celular, y finalmente a la autodestrucción de esta y a la muerte celular. La peroxidación que acontece en la membrana mitocondrial afecta los componentes proteicos presentes en la cadena transportadora de electrones (CTE), lo que a su vez puede inhibir algunos procesos esenciales, tales como la síntesis de ATP, el transporte de metabolitos e iones y el bombeo de protones, provocando como resultado final la destrucción de la célula. Cabe resaltar que la susceptibilidad de las membranas biológicas a la peroxidación
aumenta en la medida en que también se incrementa el grado de instauración de los lípidos, es decir, el número de enlaces dobles que estos contienen, \((Rojas Hurtado & Martínez Palomino, 2010)\).

2.5. **ANTIOXIDANTE**

Se define habitualmente como cualquier sustancia que, cuando está presente en concentraciones bajas en comparación a las de un sustrato oxidable se pueden considerar casi todas las moléculas orgánicas o inorgánicas que se encuentran en las células vivas, como proteínas, lípidos, hidratos de carbono y las moléculas de ADN.

Los antioxidantes exógenos, actúan como moléculas suicidas ya que se oxidan al neutralizar al radical libre, por lo que la reposición de ellos debe ser continua, mediante la ingestión de los nutrientes que los contienen, \((Suwalsky, 2006)\), \((Gonzales Torres, 2000)\).
2.6. PERFIL LIPÍDICO

Se llama perfil lipídico a las concentraciones de lípidos en sangre, los cuales son: triglicéridos, colesterol total, colesterol asociado a las lipoproteínas de alta densidad (HDL-colesterol) y colesterol asociado a las lipoproteínas de baja densidad (LDL-colesterol), (Quesada Mora, 2007).

2.7. DISLIPIDEMIA

Se conoce con el nombre de dislipidemia o dislipemia a la alteración de los lípidos sanguíneos, incluyendo la sobreproducción o deficiencia de colesterol total y sus diferentes fracciones (LDL y HDL) y los triglicéridos.

2.7.1. Diagnóstico Clínico de Dislipidemia

Se basa en lasalteraciones de los niveles séricos, de las lipoproteínas y de sus lípidos y/o de la presencia de depósitos
de ellos en la piel y tendones. El diagnóstico se hace con la evaluación de sus lípidos componentes.

Cuadro 2. Niveles de Lípidos Recomendados por el Adult Treatment

<table>
<thead>
<tr>
<th>Lípidos</th>
<th>Niveles (mg/dL)</th>
<th>Categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colesterol-LDL</td>
<td>< 100</td>
<td>Óptimo</td>
</tr>
<tr>
<td></td>
<td>100-129</td>
<td>Deseable</td>
</tr>
<tr>
<td></td>
<td>130-159</td>
<td>Límite alto</td>
</tr>
<tr>
<td></td>
<td>160-189</td>
<td>Alto</td>
</tr>
<tr>
<td></td>
<td>≥ 190</td>
<td>Muy alto</td>
</tr>
<tr>
<td>Colesterol total</td>
<td>< 200</td>
<td>Deseable</td>
</tr>
<tr>
<td></td>
<td>200-239</td>
<td>Límite alto</td>
</tr>
<tr>
<td></td>
<td>≥ 240</td>
<td>Alto</td>
</tr>
<tr>
<td>Colesterol-HDL</td>
<td>< 40</td>
<td>Rango</td>
</tr>
<tr>
<td></td>
<td>≥ 60</td>
<td>Alto</td>
</tr>
<tr>
<td></td>
<td>< 150</td>
<td>Normal</td>
</tr>
<tr>
<td>Triglicéridos</td>
<td>150-199</td>
<td>Límite alto</td>
</tr>
<tr>
<td></td>
<td>200-499</td>
<td>Alto</td>
</tr>
<tr>
<td></td>
<td>≥500</td>
<td>Muy alto</td>
</tr>
<tr>
<td>Colesterol no-HDL</td>
<td>< 100-190</td>
<td>Según el riesgo cardiovascular</td>
</tr>
</tbody>
</table>

2.7.2. Hiperlipoproteínenaría o Hiperlipidemia

Es el aumento de una o más fracciones lipídicas con incremento simultáneo de lipoproteínas. Las hiperlipidemias primarias son enfermedades sui generis, o sea, trastornos del metabolismo lipídico en que no dependen de otra enfermedad básica. A diferencia de ellas, las secundarias son consecuencia de un padecimiento existente, y como síntoma de otra
enfermedad subyacente, cambian durante el transcurso de ella, (Pacheco Leal, 2004).

Las anomalías de lípidos y lipoproteínas son muy comunes en la población y son considerados como un factor de riesgo para enfermedades cardiovasculares debido a la influencia del colesterol, uno de los lípidos más clínicamente pertinentes, sobre la ateroesclerosis. Además, algunas formas pueden predisponer a la pancreatitis aguda, (Medical News, 2011).

2.7.3. Hipolipemiante

Consiste en disminuir el contenido lipídico de la sangre. Los lípidos en la sangre van unidos a proteínas específicas formando lipoproteínas, (El Ergonomista, 2010).
CAPÍTULO III
MATERIALES Y MÉTODOS

3.1. MARCO METODOLÓGICO

3.1.1. Tipo de Estudio

Experimental

Estudio en el que se manipulan intencionalmente una o más variables independientes (supuestas causas – antecedentes), para analizar las consecuencias que la manipulación tiene sobre una o más variables dependientes (supuestos efectos – consecuentes), dentro de una situación de control creada por el investigador, (Namakforoosh, 2005).

Prospectivo

La población sujeta al estudio, se observa a través del tiempo. El seguimiento se realiza mediante la aplicación de
cuestionarios, exámenes clínicos periódicos, seguimiento de registros especiales y rutinarios, entre otros. La duración del seguimiento varía hasta que se presente el efecto postulado en nuestra hipótesis, (Namakforoosh, 2005).

Longitudinal

En este diseño se realiza más de una medición. Entre las mismas puede intervenir o no el investigador, lo que determinará que el estudio sea observacional o experimental, (Namakforoosh, 2005).

Ensayo de Laboratorio

Estos estudios reúnen condiciones similares a los ensayos clínicos, en cuanto a la asignación al azar, a los criterios de inclusión, entre otros. El escenario de estos diseños es el laboratorio, y son de mucho interés para probar hipótesis etiológicas en animales, previo a su ensayo en individuo y grupos humanos, (Hernandez Sampieri, 2006). Es entonces de laboratorio, ya que la experimentación íntegra se realiza en el bioterio de la universidad, además que la marcha fitoquímica se lleva a cabo en un laboratorio acondicionado para el propósito.
El presente estudio es experimental, porque la variable: efecto hipolipemiante, depende del tratamiento que se administra. Es prospectivo porque los datos tales como: nivel de colesterol total, y triglicéridos; se van registrando en determinados períodos conforme se avanza el estudio de acuerdo a los objetivos planteados. Es longitudinal, ya que se toman las muestras sanguíneas en 3 estadíos; basal, al término de la inducción de hiperlipidemia y al finalizar el tratamiento de chía.

3.2 POBLACIÓN

Está constituida por 15 animales de experimentación, correspondientes a la especie Rattus novergicus Wistar machos. Los cuales se aislaron en jaula separadas para el control de su dieta, al mismo tiempo el tratamiento de chía negra se realizó en 5 animales, de la misma forma 5 para el tratamiento de chía blanca y 5 como control; seleccionados aleatoriamente. Con edad promedio de 4 meses y peso corporal promedio de 237 g.
3.3 MUESTRA

Para la ejecución del presente estudio, la muestra vegetal fue las semillas de *Salvia hispánica* L., adquiridas del centro de abastos conocido como FERIA DEL ALTIPLANO de la ciudad de Arequipa, que son cultivadas en el Valle de Majes en Arequipa y cuya sepalas provienen de México.

3.4 INSTRUMENTOS

3.4.1. Ficha de Recolección de Datos

En el que se consignan datos como: Colesterol total, Triglicéridos, pesos iniciales, dosis de tratamiento, intervalo de dosis, duración de tratamiento.

3.4.2. Observación Directa

Observando los fenómenos que ocurren durante la marcha fitoquímica y durante todo el proceso de
experimentación, para su posterior registro, con el fin de obtener la información necesaria para la investigación

3.5 MÉTODOS

3.5.1. Preparación de la Dieta Hiperlipidémica o Hipercalórica

Para la inducción de un estado hiperlipidémico, fue necesaria la administración de una dieta hipercalórica con alto contenido en lípidos, cuya composición fue la siguiente:

Cuadro 3. Dieta Hipercalórica

<table>
<thead>
<tr>
<th>ALIMENTO</th>
<th>COLESTEROL mg/100 g del alimento</th>
<th>Kcal/ 100 g de alimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARINA</td>
<td>0</td>
<td>0,344</td>
</tr>
<tr>
<td>YEMA DE HUEVO</td>
<td>215</td>
<td>0,055</td>
</tr>
<tr>
<td>SESOS DE RES</td>
<td>2000</td>
<td>120</td>
</tr>
<tr>
<td>ACEITE VEGETAL</td>
<td>10</td>
<td>884</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2225</td>
<td>1004,4</td>
</tr>
</tbody>
</table>

FUENTE: Pauccara Hilario, (2014)
Se elaboró en forma de pellets (por la ventaja que presenta al satisfacer la necesidad de roer de estos animales, es de fácil manejo, almacenamiento y administración, siendo mínimo el desperdicio cuando lo ingieren) usando los ingredientes naturales frescos, El equivalente administrado por cada animal fue de 345 kcal/día, (Lugo, 2010). Mezclando cuidadosamente los elementos se forma una masa casi homogénea y se fríen haciendo pequeños pellets del preparado. Se proporcionó la comida a la misma hora (9:00 am.) una vez al día; además de agua purificada, a excepción de los días en los que se extrae la muestra sanguínea.

Figura 8. Pellets Porción por Jaula

FUENTE: Preparación de laboratorio.
3.5.2. Preparación del Tratamiento de Chía

Cada muestra se pesa por separado calculando la cantidad que debe recibir cada animal, teniendo como referencia sus pesos corporales. La dosis administrada es de 1000 mg/kg, tomando como referencia el trabajo realizado en el 2014, con semillas del valle de Majes en la Universidad Católica de Arequipa, para el tratamiento de hiperlipidemia.

Una vez pesada la cantidad necesaria de semillas, se procede a triturar con ayuda de un mortero para fragmentarlas (para su administración por medio de la cánula). Posteriormente se agregan 5 ml de agua purificada y se transfiere a una jeringa y se rotula: A (chía blanca) y B (chía negra), de ésta forma se administran 5 ml diariamente del preparado para cada animal.

Figura 9. Preparado de chía Blanca (Izquierda), chía Negra (Derecha)

FUENTE: Preparación de laboratorio.
3.5.3. Marcha Fitoquímica

Se aplicó procedimientos cualitativos, para determinar mediante reacciones colorimétricas o de otro cambio fisicoquímico que expongan la presencia de grupos funcionales característicos de metabolitos secundarios.

Figura 10. Marcha Fitoquímica Cualitativa

FUENTE: J. Arroyo, 2000
3.5.3.1. Taninos: Ensayo de Tricloruro Férrico

En dos tubos de ensayo se colocaron 1 ml de solución madre de chía blanca y chía negra. Tomar 1 ml del filtrado en un tubo de ensayo y adicionar 2 gotas de solución de tricloruro férrico (FeCl₃ al 1 %). La aparición de un color verde, azul o negro es prueba positiva (+) para compuestos fenólicos; se realiza el mismo procedimiento para ambas muestras.

Figura 11. Ensayo Tricloruro Férrico

FUENTE: Prueba de Laboratorio.
3.5.3.2. Proteínas: Ensayo de Biuret

La presencia de proteínas en una mezcla se puede determinar mediante la reacción del Biuret. Está hecha de hidróxido potásico (KOH) y sulfato cúprico (CuSO₄), junto con tartrato doble de sodio y potasio (KNaC₄O₆·4H₂O). El reactivo, de color azul, cambia a violeta en presencia de proteínas, y vira a rosa cuando se combina con polipéptidos de cadena corta.

El Hidróxido de Potasio no participa en la reacción, pero proporciona el medio alcalino necesario para que tenga lugar. La reacción se basa en la formación de un compuesto de color violeta, debido a la formación de un complejo de coordinación entre los iones Cu²⁺ y los pares de electrones no compartidos del nitrógeno que forma parte de los enlaces peptídicos. En un tubo de ensayo se coloca 1ml de la muestra madre y se añaden 3 gotas de solución de Biuret; repetir el procedimiento con ambas muestras.
3.5.3.3. Azúcares Reductores: Ensayo de Fehling A y Fehling B

El reactivo está formado por dos soluciones llamadas A y B. La primera es una solución de sulfato cúprico; la segunda, de hidróxido de sodio y una sal orgánica llamada tartrato de sodio y potasio (sal de Seignette).

Cuando se mezclan cantidades iguales de ambas soluciones, aparece un color azul intenso por la formación de un complejo formado entre el ion cúprico...
y el tartrato. Agregando un aldehído y calentando suavemente, el color azul desaparece y aparece un precipitado rojo de óxido cuproso (Cu₂O).

Se toma 2 ml de muestra madre, añadir 1 ml de Fehling A y 1 ml de Fehling B. Luego calentar el tubo al baño María o directamente en un mechero. Se realiza el procedimiento con cada muestra.

Figura 13. Ensayo Fehling A y B

FUENTE: Prueba de Laboratorio.
3.5.3.4. Flavonoides: Ensayo Shinoda

El zinc en polvo reacciona con HCL concentrado. El hidrógeno generado produce por reducción el ión flavilio de color rojo escarlata (varía desde el rosa muy débil hasta rojo escarlata). Se toma un 1 ml de la muestra madre en un tubo de ensayo, agregar la cinta de magnesio y por la pared del tubo dejar caer lentamente HCl concentrado (37 %); la aparición de colores: naranja, rojo, violeta o rosado, indican que la prueba es positiva (+) para flavonoides, se debe realizar el procedimiento para ambas muestras.

Figura 14. Ensayo Shinoda

FUENTE: Prueba de Laboratorio.
3.5.3.5. Saponinas: Ensayo de Espuma

Permite reconocer en una muestra la presencia de saponinas, tanto del tipo esteroidal como triterpénica. Para ello se coloca 2 ml de muestra en un tubo de ensayo y se procede a agitar fuertemente. El ensayo se considera positivo si aparece espuma en la superficie del líquido persistente por más de 2 minutos.

Figura 15. Ensayo de Espuma

FUENTE: Prueba de Laboratorio.
3.5.4. Estandarización de los Animales de Experimentación

Durante esta fase los animales se mantuvieron bajo observación para detectar la posible aparición de cualquier patología o su cambio de comportamiento. Los animales disponían de agua y comida (semillas de cebada, trigo y granos de maíz) durante todo el periodo de aclimatación en las mismas cantidades, antes de la inducción (administración de dieta hiperlipidémica). Durante la fase experimental los comederos fueron retirados una noche anterior al primer día de experimentación, permaneciendo en ayunas hasta la administración de la nueva dieta, con el objetivo de facilitar una mejor aceptación de dicha dieta.

3.5.5. Inducción de Hiperlipidemia

La inducción de hiperlipidemia se logró mediante el suministro durante 15 días de una dieta hipercalórica con alto contenido de lípidos consistente en 345 kcal por cada animal, de un preparado a base de sesos de res, harina, yemas de huevo y aceite vegetal. (Fórmula empleada por el trabajo de
Pauccara Hilario). Dicha dieta fue administrada a la misma hora, a excepción de los días en que se tomaban las muestras sanguíneas. Se formaron aleatoriamente tres grupos experimentales de 5 animales cada uno, dispuestos en jaulas independientes.

Grupo A: A los animales de este grupo se les administró el tratamiento de Chía blanca a dosis de 1000 mg/kg para cada animal.

Grupo B: A los animales de este grupo se les administró el tratamiento de Chía negra a dosis de 1000 mg/kg para cada animal.

Grupo C: (Control): Los animales recibieron la misma dieta que los demás grupos, pero no recibieron el tratamiento de chía.

Se registraron promedios diarios de temperatura y humedad relativa en el local de alojamiento de los animales por parte del bioterio. Además se controló el horario de administración, concentración y dosis a administrar del producto. Se determinaron los valores plasmáticos de colesterol total, y triglicéridos en 3 momentos: estado basal, a
los 15 días de inducción de hiperlipemia y 15 días de dieta hiperlipidémica conjuntamente con el tratamiento de chía, con el objetivo de evaluar la actividad hipolipemiante en ratas de especie *Rattus norvegicus* Wistar.

3.5.6. Inducción del Tratamiento de Chía

Se suministra por vía oral con ayuda de una cánula orogástrica. La dosis utilizada es 1000 mg/kg diluido en 5 ml. de agua purificada, por cada animal para cada día. Se administra a temperatura ambiente, en un periodo no mayor a cinco minutos por cada animal de experimentación, al grupo A, grupo B, excepto al grupo blanco.

Figura 16. Administración del Tratamiento por Cánula Orogástrica

FUENTE: Bioterio.
Cuadro 4. Modelo A (chía blanca), Modelo B (chía negra), Modelo C (control).

<table>
<thead>
<tr>
<th>ANIMAL</th>
<th>MODELO</th>
<th>PESO INICIAL (g)</th>
<th>DIETA HIPERLIPIDICA ADMINISTRADA</th>
<th>PESO EN ESTADO DE HIPERLIPIDEMIA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>237</td>
<td>345 Kcal</td>
<td>271</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>237</td>
<td>345 Kcal</td>
<td>271</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>238</td>
<td>345 Kcal</td>
<td>271</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>236</td>
<td>345 Kcal</td>
<td>270</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>237</td>
<td>345 Kcal</td>
<td>270</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>236</td>
<td>345 Kcal</td>
<td>269,5</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>236</td>
<td>345 Kcal</td>
<td>269</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>238</td>
<td>345 Kcal</td>
<td>272</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>237</td>
<td>345 Kcal</td>
<td>271</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>238</td>
<td>345 Kcal</td>
<td>272</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>236</td>
<td>345 Kcal</td>
<td>270</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>238</td>
<td>345 Kcal</td>
<td>272</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>237</td>
<td>345 Kcal</td>
<td>270</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>237</td>
<td>345 Kcal</td>
<td>271</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>236</td>
<td>345 Kcal</td>
<td>269</td>
</tr>
</tbody>
</table>

FUENTE: Datos tomados en el bioterio y laboratorio.

3.5.7. Obtención de Muestras Sanguíneas

La extracción de la muestra sanguínea (1,0 ml aproximadamente) se obtuvo en ayunas, mediante el método
de Dartman, que utiliza la punción capilar a nivel del ángulo interno del ojo, las muestras son recolectadas y rotuladas en envases con cierre hermético. Posteriormente las muestras de sangre se llevan a una centrifuga de tubos Eppendorf a 3000 r.p.m, durante 5 minutos, con el fin de obtener el suero limpio y sin hemólisis. Estos sueros se transfirieron con la ayuda de una micropipeta, a unos tubos rotulados y esterilizados, para la realización de las pruebas bioquímicas correspondientes. Culminada la extracción sanguínea y la centrifugación se lleva a cabo los diferentes análisis enzimáticos para determinar colesterol total y triglicéridos.

Figura 17. Extracción de muestra mediante método de Dartman

FUENTE: Bioterio.
3.5.8. Medición Colesterol Total y Triglicéridos

El colesterol total y triglicéridos fue medido en los animales de experimentación en estado basal, en el estado de hiperlipidemia y a los 15 días de administrado el tratamiento siguiendo los siguientes métodos.

3.5.8.1. Determinación del Colesterol Total

El colesterol total se determina por acción de las enzimas Colesterol Éster Hidrolasa (CEH) y Colesterol Oxidasa (CHOD), la primera libera el colesterol de los ésteres de colesterol, y la segunda oxida el colesterol libre produciéndose peróxido de hidrógeno, el cual en presencia de la enzima peroxidasa (PAD) reacciona con el sistema cromogénico dando origen a un compuesto coloreado en cantidad proporcional a la concentración de colesterol presente en la muestra que absorbe a la cantidad de 505 nm.
Colesterol éster \rightarrow CHE \rightarrow Colesterol + ácidos grasos
Colesterol + O_2 \rightarrow CHOD \rightarrow Colest-4-en-3-ona + H_2O_2
$2H_2O_2 + 4$-AP + p-HBA \rightarrow PAD \rightarrow Comp. Coloreado + $4H_2O$

Para la determinación del colesterol total se utilizará el procedimiento a continuación:

Cuadro 5. Determinación de Colesterol Total

<table>
<thead>
<tr>
<th></th>
<th>BLANCO</th>
<th>ESTÁNDAR</th>
<th>MUESTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estándar</td>
<td></td>
<td>0,01 ml</td>
<td></td>
</tr>
<tr>
<td>Muestra (suero)</td>
<td></td>
<td></td>
<td>0,01 ml</td>
</tr>
<tr>
<td>Reactivo de trabajo</td>
<td>1,00 ml</td>
<td>1,00 ml</td>
<td>1,00 ml</td>
</tr>
</tbody>
</table>

Mezclar e incubar 5 minutos a 37 °C o a 10 minutos a temperatura ambiente (menor a 20 °C). Leer las absorbancias llevando a cero el fotocolorímetro con el blanco de reactivo. El color resultante es estable por los menos treinta minutos.
3.5.8.2. Medición de Triglicéridos

Los triglicéridos son hidrolizados por una lipasa específica liberando ácidos grasos y glicerol. El glicerol es fosforilado por la enzima gliceroquinasa (GK) y posteriormente, el glicero-1-fosfato es oxidado a dihidroxiacetona fosfato por la enzima glicerol-fosfato oxidasa (GPO), generándose peróxido de hidrógeno. Posteriormente el peróxido de hidrógeno reacciona con 4-amino-antipirina (4-AAP) y el ácido 3,5-Dicloro-2-Hidroxibencesulfónico (DCBS) para producir por medio de la enzima peroxidasa un compuesto coloreado en cantidad proporcional a la concentración de triglicéridos presente en la muestra, midiéndose la absorbancia a 520 nm.

\[
\text{Triglicéridos} \xrightarrow{\text{Lipasa}} \text{Glicerol + ácidos grasos} \\
\text{Glicerol +ATP} \xrightarrow{\text{GK}} \text{Glicerol-3-fosfato + ADP} \\
\text{Glicerol-3-fosfato +O}_2 \xrightarrow{\text{GPO}} \text{Dihidroxiacetonafosfato + H}_2\text{O}_2 \\
2\text{H}_2\text{O}_2 + 4\text{-AAP} + \text{DCBS} \xrightarrow{\text{PAD}} \text{Comp. Coloreado + 4H}_2\text{O}
\]
Para la determinación de triglicéridos se utilizará el procedimiento a continuación:

Cuadro 6. Determinación de Triglicéridos

<table>
<thead>
<tr>
<th></th>
<th>BLANCO</th>
<th>ESTÁNDAR</th>
<th>MUESTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estándar</td>
<td></td>
<td>0,01 ml</td>
<td></td>
</tr>
<tr>
<td>Muestra (suero)</td>
<td></td>
<td></td>
<td>0,01 ml</td>
</tr>
<tr>
<td>Reactivo de trabajo</td>
<td>1,00 ml</td>
<td>1,00 ml</td>
<td>1,00 ml</td>
</tr>
</tbody>
</table>

3.6. ANÁLISIS ESTADÍSTICO

Se obtiene sumando todos los valores individuales $\Sigma(n)$ y dividiendo el número de valores n.

$$\bar{X} = \frac{\Sigma(n)}{n}$$

◊ Desviación estándar: O desviación típica es una medida de dispersión para variables de razón de intervalo, de gran utilidad en la estadística descriptiva. Es una medida que informa de la media de distancia que tienen los datos respecto a su media aritmética,
expresada en las mismas unidades que la variable. Por definición desviación estándar es:

\[S = \sqrt{\frac{\sum(x - \bar{x})^2}{n - 1}} \]

◊ **Análisis de varianza factorial:** El análisis de varianza factorial permite estudiar la interacción de una variable dependiente respecto de dos factores que influyen en ella.

◊ **Test de Tukey:** Es una prueba de comparación múltiple, utiliza medias graduales, se basa en el análisis de varianza factorial y asegura que la probabilidad de una o más comparaciones que se juzgue significativa solamente por azar no sea mayor de 5 %, es decir, si el análisis de varianza factorial de los resultados obtenido fueran significativos a los diferentes tratamientos, se procederá a averiguar estadísticamente cuál de ellos fue más eficiente.
CAPÍTULO IV

RESULTADOS

Tabla 1:

MARCHA FITOQUÍMICA CUALITATIVA DE LA SOLUCIÓN DE CHÍA BLANCA Y CHÍA NEGRA.

<table>
<thead>
<tr>
<th>TIPO DE COMPUESTO</th>
<th>PRUEBAS</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHÍA BLANCA</td>
</tr>
<tr>
<td>Taninos</td>
<td>Cloruro Férrico</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoides</td>
<td>Shinoda</td>
<td>+</td>
</tr>
<tr>
<td>Azucares reductores</td>
<td>Fehling</td>
<td>-</td>
</tr>
<tr>
<td>Saponinas</td>
<td>Espuma</td>
<td>+</td>
</tr>
<tr>
<td>Proteínas</td>
<td>Biuret</td>
<td>+</td>
</tr>
</tbody>
</table>

Fuente: Resultados de marcha fitoquímica.

Interpretación:

El signo (+) significa que hay presencia de ese metabolito secundario en la solución. El signo (-) significa que hay ausencia para ese metabolito secundario en la solución. En la tabla 1, se indica los resultados de la marcha fitoquímica realizado a la solución fluida de la chía, los ensayos positivos fueron: flavonoides, saponinas y proteínas. Así confirmando la presencia de ciertos principios activos, al cual se le atribuye la propiedad hipolipemianta, (Paucarca Hilario, 2014).
Tabla 2:

CONTROL DE CALIDAD: ASPECTOS ORGANOLÉPTICOS DE LA SOLUCIÓN DE CHÍA BLANCA Y CHÍA NEGRA.

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>SOL. CHIA BLANCA</th>
<th>SOL. CHIA NEGRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olor</td>
<td>Característico de la planta</td>
<td>Característico de la planta</td>
</tr>
<tr>
<td>Color</td>
<td>Claro ligeramente turbio</td>
<td>Oscuro ligeramente turbio</td>
</tr>
<tr>
<td>Aspecto</td>
<td>Consistencia mediana</td>
<td>Mayor consistencia que la blanca</td>
</tr>
<tr>
<td>Sabor</td>
<td>Sabor débil</td>
<td>Sabor débil</td>
</tr>
</tbody>
</table>

Fuente: Examen de Laboratorio.

Interpretación:

El análisis organoléptico de la solución de semillas de chía, indica un olor característico de la planta y del aceite que éste contiene. La solución tiene un aspecto ligeramente espeso en la semilla blanca, y más espeso en la semilla negra, debido al mucílago formado por los fragmentos de la semilla y por el tamaño de los fragmentos, ya que las de semilla negra tienen mayor tamaño; la solución de las semillas presenta un color característico de la capa externa de las mismas, sin que ésta coloree el agua. Su densidad es mayor que el del agua. Finalmente su sabor en ambos es algo débil, parecido al de la semilla de linaza, fácilmente disimulable.
Tabla 3:

EFECTO DE LA CHÍA SOBRE EL COLESTEROL TOTAL EN RATAS ALBINAS

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>ANIMAL</th>
<th>BASAL mg/dl</th>
<th>HIPERLIPEMIA mg/dl</th>
<th>HIP+TTO mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo A (CHIA BLANCA)</td>
<td>1</td>
<td>54</td>
<td>91</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>53</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>55</td>
<td>76</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>49</td>
<td>88</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>51</td>
<td>80</td>
<td>94</td>
</tr>
<tr>
<td>Grupo B (CHIA NEGRA)</td>
<td>1</td>
<td>50</td>
<td>78</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>47</td>
<td>89</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49</td>
<td>80</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>48</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>54</td>
<td>87</td>
<td>94</td>
</tr>
<tr>
<td>Grupo C (CONTROL)</td>
<td>1</td>
<td>49</td>
<td>89</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>57</td>
<td>87</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>56</td>
<td>92</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>53</td>
<td>93</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>55</td>
<td>88</td>
<td>104</td>
</tr>
</tbody>
</table>

Fuente: Examen de Laboratorio.

Interpretación:

En la tabla 3, se puede observar los valores en los 3 estadíos de la experimentación; el gran incremento de los valores en los 3 grupos en el estado de hiperlipidemia comparándolos con los valores basales, asimismo un ligero incremento en el estado de hiperlipidemia con tratamiento de chía.
Tabla 4:

COLESTEROL TOTAL DE RATAS ALBINAS EN ESTADO BASAL.

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>Nº DE ANIMALES</th>
<th>PROMEDIO (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIA NEGRA</td>
<td>5</td>
<td>49,60</td>
</tr>
<tr>
<td>CHIA BLANCA</td>
<td>5</td>
<td>52,40</td>
</tr>
<tr>
<td>CONTROL</td>
<td>5</td>
<td>54,00</td>
</tr>
</tbody>
</table>

Fuente: Examen de Laboratorio.

Gráfico 1. Colesterol Total de ratas albinas en estado basal.

Fuente: Tabla 4.

Interpretación:

La tabla 4 muestra los promedios de los valores de colesterol total en estado basal obtenidos del análisis de sangre por cada grupo, se observa como valor promedio mínimo 49,60 mg/dl para el grupo que se trabajará con chía negra y un valor promedio máximo de 54,00 mg/dl en el grupo control.
Tabla 5:

EFECTO DE LA CHÍA SOBRE EL COLESTEROL TOTAL DE RATAS ALBINAS A LOS 15 DÍAS (HIPERLIPÍDICO).

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>Nº DE ANIMALES</th>
<th>PROMEDIO (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIA NEGRA</td>
<td>5</td>
<td>85,00</td>
</tr>
<tr>
<td>CHIA BLANCA</td>
<td>5</td>
<td>85,40</td>
</tr>
<tr>
<td>CONTROL</td>
<td>5</td>
<td>89,80</td>
</tr>
</tbody>
</table>

Fuente: Examen de Laboratorio.

Gráfico 2. Efecto de la chía sobre el colesterol total de ratas albinas a los 15 días

Fuente: Tabla 5.

Interpretación:

La tabla 5 muestra los promedios de los valores de colesterol total en estado hiperlipídico obtenidos del análisis de sangre por cada grupo, se observa como valor promedio mínimo 85,00 mg/dl para el grupo que se trabajará con chía negra y un valor promedio máximo de 89,80 mg/dl en el grupo control.
Tabla 6:

EFECTO DE LA CHÍA SOBRE EL COLESTEROL TOTAL DE RATAS ALBINAS A LOS 30 DÍAS (DIETA HIPERCALÓRICA + CHÍA).

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>Nº DE ANIMALES</th>
<th>PROMEDIO (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIA NEGRA</td>
<td>5</td>
<td>93,00</td>
</tr>
<tr>
<td>CHIA BLANCA</td>
<td>5</td>
<td>94,20</td>
</tr>
<tr>
<td>CONTROL</td>
<td>5</td>
<td>116,20</td>
</tr>
</tbody>
</table>

Fuente: Examen de Laboratorio.

Gráfico 3. Efecto de la chía sobre el colesterol total de ratas albinas a los 30 días.

Fuente: Tabla 6.

Interpretación:

La tabla 6 muestra los promedios de los valores de colesterol total luego de 15 días de administrar la dieta hipercalórica además del tratamiento de chía para los 2 primeros grupos, se observa como valor promedio mínimo 93,00 mg/dl para el grupo que se trabajó con chía negra y un valor promedio máximo de 116,20 mg/dl en el grupo control.
Tabla 7: COMPARACIÓN DEL EFECTO DE LA CHÍA SOBRE EL COLESTEROL TOTAL EN RATAS ALBINAS.

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>CÁLCULO</th>
<th>BASAL</th>
<th>15 días</th>
<th>30 días</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chía blanca</td>
<td>Media</td>
<td>52,40</td>
<td>85,40</td>
<td>94,20 (a)</td>
</tr>
<tr>
<td></td>
<td>Desv. est.</td>
<td>2,408</td>
<td>7,057</td>
<td>4,817</td>
</tr>
<tr>
<td>Chía negra</td>
<td>Media</td>
<td>49,60</td>
<td>85,00</td>
<td>93,00 (a)</td>
</tr>
<tr>
<td></td>
<td>Desv. est.</td>
<td>2,702</td>
<td>5,701</td>
<td>5,831</td>
</tr>
<tr>
<td>Control</td>
<td>Media</td>
<td>54,00</td>
<td>89,80</td>
<td>116,20 (b)</td>
</tr>
<tr>
<td></td>
<td>Desv. est.</td>
<td>3,162</td>
<td>2,588</td>
<td>12,029</td>
</tr>
<tr>
<td></td>
<td>Fo =</td>
<td>3.221</td>
<td>1.196</td>
<td>16.959</td>
</tr>
<tr>
<td></td>
<td>Fc =</td>
<td>3.885</td>
<td>3.885</td>
<td>3.885</td>
</tr>
<tr>
<td></td>
<td>p =</td>
<td>0.0759</td>
<td>0.336</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>p > 0.05</td>
<td></td>
<td>p > 0.05</td>
<td>p < 0.05</td>
</tr>
</tbody>
</table>

Fuente: Análisis Estadístico.

Donde: Fo = Frecuencias observadas, a = grupo con tratamiento y b = grupo control.
Interpretación:

La Tabla 7, según el análisis de varianza de un factor de variación se aprecia que el colesterol total de las ratas tratadas con chía blanca, negra y control desde los 15 a 30 días no presentó diferencias estadísticas significativas ($p > 0.05$). La prueba de Tukey nos indica que no existe una diferencia estadística significativa en la disminución de colesterol total entre las semillas de chía blanca y de chía negra. Asimismo, se observa que a los 30 días, la menor concentración de colesterol total se presentó con la chía blanca y negra con 94,20 y 93,00 mg/dl respectivamente, en comparación con el grupo control.
Tabla 8:

EFECTO DE LA CHÍA SOBRE TRIGLICÉRIDOS EN RATAS ALBINAS

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>ANIMAL</th>
<th>BASAL mg/dl</th>
<th>HIPERLIPEMIA mg/dl</th>
<th>HIP+TTO mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUPO A (CHIA BLANCA)</td>
<td>1</td>
<td>53</td>
<td>69</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>67</td>
<td>67</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49</td>
<td>63</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>60</td>
<td>77</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>63</td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td>GRUPO B (CHIA NEGRA)</td>
<td>1</td>
<td>60</td>
<td>73</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>62</td>
<td>74</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>64</td>
<td>79</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>64</td>
<td>79</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>61</td>
<td>73</td>
<td>78</td>
</tr>
<tr>
<td>GRUPO C (CONTROL)</td>
<td>1</td>
<td>62</td>
<td>77</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>59</td>
<td>73</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>54</td>
<td>70</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>57</td>
<td>74</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>64</td>
<td>80</td>
<td>99</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Interpretación:

En la tabla 8, se puede observar los valores de triglicéridos en los 3 estadíos de la experimentación; el gran incremento de los valores en los 3 grupos en el estado de hiperlipidemia comparándolos con los valores basales, asimismo un ligero incremento en el estado de hiperlipidemia con tratamiento de chía.
Tabla 9:

EFECTO DE LA CHÍA SOBRE LOS TRIGLICÉRIDOS DE RATAS ALBINAS EN ESTADO BASAL.

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>Nº DE ANIMALES</th>
<th>PROMEDIO (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIA BLANCA</td>
<td>5</td>
<td>58,40</td>
</tr>
<tr>
<td>CONTROL</td>
<td>5</td>
<td>59,20</td>
</tr>
<tr>
<td>CHIA NEGRA</td>
<td>5</td>
<td>62,20</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia.

Gráfico 5. Efecto de la chía sobre los triglicéridos de ratas albinas a en estado basal.

Fuente: Tabla 9.

Interpretación:

La tabla 9 muestra los promedios de los valores de triglicéridos en estado basal obtenidos del análisis de sangre por cada grupo, se observa como valor promedio mínimo 58,40 mg/dl para el grupo que se trabajará con chía blanca y un valor promedio máximo de 62,20 mg/dl en el grupo de chía negra.
Tabla 10:
EFECTO DE LA CHÍA SOBRE LOS TRIGLICÉRIDOS DE RATAS ALBINAS A LOS 15 DÍAS.

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>Nº DE ANIMALES</th>
<th>PROMEDIO (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIA BLANCA</td>
<td>5</td>
<td>70,80</td>
</tr>
<tr>
<td>CHIA NEGRA</td>
<td>5</td>
<td>75,60</td>
</tr>
<tr>
<td>CONTROL</td>
<td>5</td>
<td>74,80</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia.

Gráfico 6. Efecto de la chía sobre los triglicéridos de ratas albinas a los 15 días.

Fuente: Tabla 10.

Interpretación:

La tabla 10 muestra los promedios de los valores de triglicéridos en estado hiperlipídico obtenidos del análisis de sangre por cada grupo, se observa como valor promedio mínimo 70,80 mg/dl para el grupo que se trabajará con chía blanca y un valor promedio máximo de 75,60 mg/dl en el grupo de chía negra.
Tabla 11:
EFECTO DE LA CHÍA SOBRE LOS TRIGLICÉRIDOS DE RATAS ALBINAS A LOS 30 DÍAS.

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>Nº DE ANIMALES</th>
<th>PROMEDIO (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIA BLANCA</td>
<td>5</td>
<td>78,00</td>
</tr>
<tr>
<td>CHIA NEGRA</td>
<td>5</td>
<td>80,40</td>
</tr>
<tr>
<td>CONTROL</td>
<td>5</td>
<td>92,60</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia.

Gráfico 7. Efecto de la chía sobre los triglicéridos de ratas albinas a los 30 días.

Interpretación:

La tabla 11 muestra los promedios de los valores de triglicéridos luego de 15 días de administrar la dieta hipercalórica además del tratamiento de chía para los 2 primeros grupos, se observa como valor promedio mínimo 80,40 mg/dl para el grupo que se trabajó con chía negra y un valor promedio máximo de 92,60 mg/dl en el grupo control.
Tabla 12:
COMPARACIÓN DEL EFECTO DE LA CHÍA SOBRE TRIGLICÉRIDOS EN RATAS ALBINAS.

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>CÁLCULO</th>
<th>BASAL</th>
<th>15 días</th>
<th>30 días</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chía blanca</td>
<td>Media</td>
<td>58,40</td>
<td>70,80</td>
<td>78,00 (a)</td>
</tr>
<tr>
<td></td>
<td>Desv. est.</td>
<td>7,335</td>
<td>6,496</td>
<td>6,964</td>
</tr>
<tr>
<td>Chía negra</td>
<td>Media</td>
<td>62,20</td>
<td>75,60</td>
<td>80,40 (a)</td>
</tr>
<tr>
<td></td>
<td>Desv. est.</td>
<td>1,789</td>
<td>3,130</td>
<td>2,302</td>
</tr>
<tr>
<td>Control</td>
<td>Media</td>
<td>59,20</td>
<td>74,80</td>
<td>92,60 (b)</td>
</tr>
<tr>
<td></td>
<td>Desv. est.</td>
<td>3,962</td>
<td>3,834</td>
<td>4,159</td>
</tr>
<tr>
<td>F =</td>
<td>0,828</td>
<td>1,487</td>
<td>12,931</td>
<td></td>
</tr>
<tr>
<td>Fc =</td>
<td>3,885</td>
<td>3,885</td>
<td>3,885</td>
<td></td>
</tr>
<tr>
<td>P =</td>
<td>0,460</td>
<td>0,265</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>p > 0,05</td>
<td>p > 0,05</td>
<td>p < 0,05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Análisis Estadístico.

Donde: F = Frecuencia, Fc= valor crítico para F, p=probabilidad

a = grupo con tratamiento y b = grupo control.
Interpretación:

La Tabla 12, según el análisis de varianza de un factor de variación se aprecia que el nivel de triglicéridos de las ratas tratadas con semillas de chía blanca, negra y el control, a partir de los 15 días se evidenció diferencias estadísticas significativas (p > 0,05) con respecto al grupo control. La prueba de Tukey nos indica que no existen diferencias estadísticas significativas en la reducción de triglicéridos entre los grupos tratados con las semillas de chía blanca y negra, a diferencia del grupo control. Asimismo, se observa que a los 30 días la menor concentración de triglicéridos se encontró con la chía blanca con 78,00 mg/dl y chía negra con 80,40 mg/dl respectivamente.
DISCUSIÓN

El presente trabajo constituye la primera investigación en nuestro país, que aborda el tema de la diferenciación de las variedades de las semillas de chía en cuanto a su efecto hipolipemiante. Se han realizado diversas investigaciones en animales de experimentación que muestran en sus resultados que la chía contiene diversas propiedades que hacen de ella un producto altamente nutricional, sin embargo este trabajo es pionero en la comparación de ambas semillas respecto a su efecto frente a una dislipidemia.

Antes de empezar la valoración del efecto hipolipemiante de la planta, fue necesario realizar una marcha fitoquímica que permitió determinar cualitativamente y/o cuantitativamente, los principales grupos de constituyentes químicos de la planta que serían los responsables de los efectos fitofarmacológicos realizados con ambas semillas, bajo las mismas condiciones.

En la marcha fitoquímica cualitativa, realizada a la chía según el cuadro 2, se evidencia la presencia de proteínas, flavonoides y saponinas, tanto en las semillas negras como en las semillas blancas. En este punto
podemos mencionar el estudio realizado en la Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas de la Universidad Católica de Santa María (Pauccara Hilario, 2014), el que tuvo como objetivo realizar un análisis fitoquímico preliminar. En este caso, al extracto de las semillas de *Salvia hispánica* L. obtenida con el disolvente alcohol etílico, con identificación por cromatografía en capa fina. En dicho estudio se utilizó como fase móvil n-hexano-acetona; la detección se realizó con ácido sulfúrico 10 % en etanol donde se observó la aparición de bandas de varios colores, que en cada caso indican la presencia de metabolitos secundarios. De ésta manera, se detectó la presencia de terpenos, flavonoides y saponinas, (Pauccara Hilario, 2014). Aquellos datos son similares con los reportados en la presente investigación, que fue encontrado mediante un método colorimétrico, coincidiendo cualitativamente con los resultados indicados, al haber encontrado también saponinas y flavonoides, además de proteínas.

Así mismo, en el trabajo titulado: “Estudio de las Propiedades Funcionales de la Semilla de Chía (*Salvia hispánica* L.) y de la Fibra Dietaria” realizado por el Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Santo Tomas México. D.F. (Salgado-Cruz et al., 2005), donde en cinco lugares se
sembró la semilla de chía y se midió la cantidad de aceite presente. Se determinó el contenido de ácidos grasos linolénico, linoleico, oleico, palmitico y esteárico, en el aceite de chía, por medio de análisis cromatográfico, (Salgado-Cruz, Cedillo López, & Orozco Beltrán, 2010).

En la marcha fitoquímica realizada, encontramos la presencia de flavonoides en ambas variedades de semilla de Chía, lo cual coincide también con la investigación realizada por García Gutiérrez en la ciudad de México, donde afirma que la Chía, contiene importantes concentraciones de flavonoides y compuestos fenólicos. Así mismo, afirma que la dislipidemia puede ser contrarrestada, incluyendo además en la dieta alimentos funcionales que puedan contener antioxidantes no nutrientes como los compuestos fenólicos que pueden ser flavonoides, saponinas, ácidos grasos poliinsaturados como el \(\omega 3 \) y \(\omega 6 \), entre otros, por sus cualidades antioxidantes, (García Gutierrez, 2012).

Según lo encontrado en el estudio mencionado anteriormente, sólo con la evaluación cualitativa colorimétrica hemos encontrado la presencia de flavonoides y saponinas, lo cual, basándonos en dichas conclusiones, le brindaría a las semillas de ambas variedades un potencial efecto frente a la dislipidemia.
Algunos de los estudios realizados de comparación de compuestos presentes en las semillas de chía, no indican la procedencia o variedad de semilla o producto que se estudió, lo cual es muy común en trabajos que se realizan con materiales vegetales, en los cuales no se especifica el tipo o procedencia de dicha muestra, lo cual complica una caracterización de acuerdo al tipo o variedad de semilla, (González Jiménez, 2010). Esta afirmación respecto a la procedencia, no tendría validez en la presente investigación ya que las variedades de semilla utilizadas, es decir tanto la semilla negra como la blanca, proceden del Valle de Majes, Arequipa, que de acuerdo a la geografía del lugar, cumple con las características señaladas en investigaciones agronómicas diversas que señalan ciertos parámetros apropiados para el cultivo adecuado de ésta especie. Investigaciones como “El efecto de la fecha de siembra en el rendimiento en Semillas de la Chí a en el Valle de Azapa” de la Universidad de Tarapacá, Chile realizado por Pizarro Waisle; afirman que los cultivos de esta planta dependen en gran parte del clima y suelo en el que se desarrollen. Por lo que Ecuador, Brasil, Argentina, recientemente Chile y nuestro país se han convertido en productores de esta semilla, ya que en el caso de Perú, nuestro clima ofrece un lugar propicio para el cultivo de la especia en cuestión, (Pizarro Waisle, 2013).
Es importante mencionar que tratándose de semillas, la composición química de sus metabolitos, está determinada casi siempre por el suelo donde se cultiva y en algunos casos también por el genotipo de la misma, es por ello la importancia de saber de dónde proviene dicho producto. Cabe mencionar que en diferentes estudios realizados con la especie Salvia hispánica L. producida en Latinoamérica, incluso en cuanto a la variedad de sus semillas blanca y negra se han reportado las excelentes cualidades nutricionales entre las que destacan, el contenido de fibra, proteínas, ácidos grasos Omega 3 y 6, y antioxidantes de estas semillas, (R. Ayerza, Wayne Coates, 2006).

En la presente investigación, se observó una disminución en los niveles de colesterol total y triglicéridos séricos en los grupos tratados con las semillas de Salvia hispánica L. por lo que se considera que existe una capacidad hipolipemiante notable desde los 15 días de administración sobre los grupos A y B, atribuible a los diferentes componentes de las semillas de chía. Los compuestos químicos presentes en las semillas de chía, de manera individual, han demostrado mejorar el perfil lipídico mediante diferentes mecanismos, identificando como principales compuestos relacionados a este efecto a los ácidos grasos
poliinsaturados (α-linolénico y linoleico), fibra dietaria y diferentes antioxidantes. Estos resultados son coherentes con diversos estudios que concluyen que el consumo de semillas de chía o de sus componentes aislados (flavonoides, fibra soluble e insoluble, ácidos grastos ω3 y ω6), produce descensos significativos en los valores de colesterol y triglicéridos.

En el estudio de Rodríguez de Sotillo & Hadley en el 2002, en la Universidad Estatal de Dakota del Norte en Estados Unidos, observó que el ácido clorogénico (flavonoide presente en la chía), vía infusión intravenosa, produjo una importante disminución en la concentración plasmática de colesterol y triglicéridos en ratas. Éste mismo flavonoide, suplementado a ratas, produjo una disminución en lípidos plasmáticos, junto a una reducción de la HMG-CoAR hepática, (Bok Park et al., 2002). Por otra parte, en hepatocitos de ratas normales, la quercetina (flavonoide presente en la chía), indujo una disminución en la síntesis de ácidos grastos y de triglicéridos, con una consecuente reducción de la formación de lipoproteínas de muy baja densidad, mientras que la síntesis de colesterol y la actividad de la HMGCoAR no fueron afectadas, (Gnoni, Paglialonga, & Siculella, 2009).
Los flavonoides contienen en su estructura química un número variable de grupos hidroxilo fenólicos y excelentes propiedades de quelación del hierro y otros metales de transición, lo que les confiere una gran capacidad antioxidante. Por ello, desempeñan un papel esencial en la protección frente a los fenómenos de daño oxidativo, y tienen efectos terapéuticos en un elevado número de patologías, incluyendo la cardiopatía isquémica, la aterosclerosis o el cáncer, (García Gutierrez, 2012).

Es importante mencionar al estudio realizado por Gonzales Jiménez, los resultados obtenidos mostraron que la fracción desengrasada de la semilla de chía contiene una elevada capacidad antioxidante, comparada con frutos como la frambuesa y la manzana roja que se distinguen por su alto contenido de antioxidantes. Mientras, que el aceite de chía muestra valores de fenoles totales comparables en relación al aceite de olivo. Dicho estudio concluye entonces, que puede considerarse la semilla de chía como un alimento con potente capacidad antioxidante, además de los beneficios que se obtendrían por los demás nutrientes que contiene como es el caso de la proteína, fibra, y ácidos grasos omega 3 y 6, (González Jiménez, 2010).
Asimismo es muy importante citar a los ácidos grasos poliinsaturados, ω3 y ω6, identificados en la semilla de chía por otros estudios precedentes al realizado. Éstos ácidos grasos son precursores de eicosanoides, compuestos que afectan varios procesos biológicos. También le otorgan flexibilidad a las membranas para permitir el movimiento de proteínas en su superficie y dentro de la bicapa lipídica. En el 2009, en La Universidad Nacional del Litoral (UNL) en Santa Fé, Argentina; se publicaron los resultados de una investigación en la cual se sometieron a ratas Wistar a una alimentación ad libitum con cuatro diferentes tipos de dietas, una de ellas rica en aceite de maíz, y el resto de semillas de Chía enteras, semillas de chía molidas y aceite de chía durante 30 días. En los resultados se observaron incrementos en el EPA (ácido eicosapentaénico). Se observaron también disminuciones estadísticamente significativas en triglicéridos e incrementos en colesterol HDL, corroborando la actividad hipolipemiante de esta semilla, (Chicco, 2009).

Teniendo en cuenta estas premisas, se pretende poner de manifiesto, que según los resultados de la presente investigación, la disminución de Triglicéridos se debió a la acción de los ácidos grasos poliinsaturados α-linolénico (ω3) presentes. Las diferentes guías de
tratamiento europeas y americanas de la dislipemia reconocen estos fármacos, los ácidos grasos ω3, como una opción terapéutica en el tratamiento de las hipertrigliceridemia. Éstos ácidos grasos, aumentan la actividad de LPL (lipoproteína lipasa) y promueve la expresión de ARNm de la LPL del tejido adiposo, entonces hay una menor entrada a la circulación y un mayor aclaramiento de VLDL. Otro de los mecanismos complementarios por el que se puede reducir el nivel de lípidos séricos es inhibiendo su absorción a través de su gran contenido de fibra (soluble e insoluble) de la semilla de chía, (Bastardo de Castañeda, 2009).

Las dieta ricas en fibra soluble juegan un importante papel en la prevención de la obesidad y, por supuesto, en los altos niveles de colesterol. Mientras, que la fibra no soluble no se une al colesterol, pero ayuda con la eliminación de desechos. Por lo tanto, detiene la absorción de colesterol y ayuda a eliminarlo del organismo más rápido. Cuando la fibra soluble se disuelve, forma una sustancia gomosa que atrapa el colesterol que ingerimos y la bilis, evitando que ingresen al torrente sanguíneo. El organismo no absorbe esta fibra, y la masa sin absorber y el colesterol se eliminan durante la defecación. Dado que el colesterol de la dieta y la bilis se eliminan, el organismo debe utilizar el de la sangre para satisfacer sus necesidades, reduciendo así los niveles de colesterol
en sangre. Cuando la fibra dietaria se deposita en el intestino, fermenta, y el ácido cólico de la bilis se rompe en un ácido graso llamado ácido quenodesoxicólico. Este último inhibe la producción de colesterol del hígado, reduciendo los niveles de colesterol en sangre.

Como puede apreciarse, las formas de investigación no han sido siempre similares, y los pocos estudios experimentales en seres humanos con dosis de semillas de chía y tiempos de tratamiento estandarizados ha sido un limitante en este campo de estudio. Sin embargo, es de común acuerdo la reducción en los valores de Colesterol Total y Triglicéridos, el cual es variable en todas las investigaciones. De hecho, en nuestro ensayo se apreció una reducción significativa en los valores de Triglicéridos en los grupos A y B en comparación con el grupo C.

Debemos mencionar que la dosis administrada fue de 1000 mg/kg de acuerdo al antecedente trabajado con las mismas semillas en el 2014 en la ciudad de Arequipa, en el que se trabajó con dosis de: 500 mg/kg y de 1000 mg/kg en un periodo de 30 días en la que se concluyó que la mejor dosis para trabajar en dislipidemias era de 1000mg/kg al día. Éste dato no concuerda con las recomendaciones de la Organización de Nutrición y la Organización Mundial de la Salud, que establecieron como
dosis 250g/día, para casos de dislipidemia o hipertrigliceridemia en personas adultas. Tomando en cuenta esta recomendación la dosis utilizada en el trabajo mencionado como antecedente, equivaldría al triple del valor establecido por la OMS, que habría sido extrapolado según el modelo elegido en dicho caso. Esto quizás porque el trabajo fue realizado en ratas como animales de experimentación.

Debemos mencionar que existe un modelo de experimentación para cada caso a trabajar, en el caso de dislipidemias, el modelo animal recomendado es el conejo, ya que el metabolismo de los lípidos en conejos es más similar al hombre, por lo tanto los resultados obtenidos son más extrapolables a la patología humana. Sin embargo, se decidió trabajar con el mismo modelo utilizado en el trabajo mencionado, de manera que sea posible, explicar, discutir y comparar el trabajo en referencia, para así realizar una mejor comparación de las semillas en base a un antecedente.

Respecto a la diferencia o igualdad en el efecto hipolipemiantente entre ambas semillas (negra y blanca), a través de todos los estadíos del proceso de experimentación. El análisis de varianza mostró que las diferencias entre los resultados obtenidos entre los grupos A y B en su
efecto hipolipemiantente, de acuerdo a los resultados de medición de colesterol y triglicéridos, no fueron estadísticamente diferentes entre genotipos, debido a falta de significancia (p < 0,05), en el perfil de ácidos grasos, entre estos dos genotipos cultivados en nuestro país. Esto puede ratificar lo que otros estudios demostraron, que las diferencias más grandes encontradas en composición de contenido y ácidos grasos de aceite son debido a la ubicación (debido a las diferencias ambientales), y no por el color de capa de semilla de chía, (Ayerza, Wayne, & Coates, 2008).

Una observación no menos importante en este juicio de chía fue que, aunque la diferencia no sea estadísticamente significativa, la semilla de chía de color negro procedente del valle de Majes, Arequipa, ha mostrado ligeramente un mejor efecto sobre el colesterol total y la blanca sobre triglicéridos, (Gráficos 4 y 8).

Según los gráficos 4 y 8, la diferencia mediante los estadíos de la experimentación de los grupos que recibieron el tratamiento con las semillas de chía presentan una desaceleración en el aumento de los niveles de colesterol total y triglicéridos a partir de los 15 días en donde se administró el tratamiento con semillas de chía. Se asume además que los
ácidos grasos obtenidos por la dieta exógena, durante el período de inducción y de dieta hipercalórica, producen alteración de la relación fosfolípidos/colesterol de las membranas biológicas, lo cual a su vez produce un cambio en la fluidez de las mismas, lo que da lugar a cambios en las actividades de las enzimas integradas en esas membranas.

Ya que la investigación debe ser discutida en todos los aspectos, no puede dejarse de lado el aspecto social, que es donde éste producto tiene mayor incidencia por su reciente popularidad. Algunos expendedores promueven la semilla de chía blanca como superior en calidad nutricional a la semilla negra. De hecho, algunos incluso han solicitado una patente sobre la base de un reclamo de haber desarrollado una variedad única de las semillas. Sin embargo, Ayerza y Coates sostienen que de existir la diferencia nutricional entre las semillas de chía, sería probablemente debida a las condiciones en que se cultiva la semilla y no el color de la semilla misma, como lo vimos anteriormente y como figura en otros estudios recientes, (Rudnicki, 2014).

En nuestro País y a nivel mundial, la gran demanda de este “producto” ha aumentado a sobremanera, y en todos los mercados se ofertan ambas variedades a distintos precios, sean estos vendidos a granel o envasados. Tenemos entonces según un sondeo en distintos
puestos de mercados de abastos un promedio aproximado de S/. 11,00 nuevos soles el kilo de chía negra y de S/. 22,00 nuevos soles el kilo de chía blanca. En puestos de medicina naturista tanto de marcas conocidas como de otras, el promedio oscila entre S/. 50,00 nuevos soles el kilo de negra y S/.80,00 nuevos soles la chía blanca. Los comercializadores le otorgan a la chía blanca mayor valor. Debido al escaso conocimiento, acerca de las diferencias e igualdades de las variedades de semillas en color, da origen a la sobrevaloración de la semilla de chía blanca, atribuyéndole mayores propiedades tanto nutricionales como medicinales.

Por todo lo mencionado, y comparado con distintos estudios y basándonos en los objetivos alcanzados en nuestra investigación, podemos finalmente afirmar que las dos variedades de semillas estudiadas, tienen un efecto hipolipemiante, sin embargo estadísticamente la diferencia entre ambas variedades no es significativa.

Se espera que éste resultado pueda ser incentivo para la realización de futuras investigaciones, que puedan ser más extensas en tiempo, espacio y población, y a su vez puedan mostrar resultados discutibles o coincidentes con los hallados en el presente estudio.
CONCLUSIONES

PRIMERA. De acuerdo a las pruebas realizadas, no se encontró diferencia significativa en la eficacia del efecto hipolipemiante, entre las dos variedades, semilla blanca y la semilla negra de Chía (*Salvia hispánica* L.), frente a dislipidemia inducida en ratas albinas (*Rattus novergicus* Wistar).

SEGUNDA. Se indujo hiperlipidemia administrando una dieta hiperalórica en las ratas albinas.

TERCERA. Realizada la marcha fitoquímica preliminar, se encontró la presencia de metabolitos secundarios como; flavonoides, proteínas y saponinas presentes, los cuales le otorgan actividad hipolipemiante a las semillas.

CUARTA. Se evidenció el efecto hipolipemiante de las semillas de chía blanca en ratas albinas con dislipemia inducida.

QUINTA.- Se evidenció el efecto hipolipemiante de las semillas de chía negra en ratas albinas con dislipemia inducida.
SEXTA.- Se determinó que a una misma dosis la semilla de chía, en su variedad de semilla blanca, no tiene mayor eficacia con respecto a la semilla negra, en comparación con los niveles de lípidos en sangre en ratas albinas (Rattus Wistar novergicus) con dislipidemia inducida.
RECOMENDACIONES

1. Realizar más estudios fitoquímicos cuantitativos, de los metabolitos de la chía blanca y negra que se cultivan en nuestro país, para otorgarle base científica a otras propiedades medicinales.

2. Realizar un estudio prolongado para conocer el efecto toxicológico a diferentes concentraciones de la Chía blanca y negra en animales de experimentación.

3. Fomentar el uso de la chía como complemento en la alimentación en el tratamiento y prevención de hiperlipidemias.
REFERENCIAS BIBLIOGRÁFICAS

Elergonomista.com, recursos sobre Farmacología en internet2009 Comunidades de divulgación científico técnica. Elergonomista.com

34. Pizarro Waisle, L. (2013). Efecto de la fecha de siembra en el rendimiento en semillas de la Chía en el Valle de Azapa. Universidad de Tarapacá, Chile. Tarapacá: Universidad de Tarapacá Chile.

http://es.slideshare.net/isabelitaanillo/farmacologia-de-hiperlipoproteinemia

ANEXOS
ANEXO 1
GALERÍA FOTOGRÁFICA

MUESTRAS SANGUÍNEAS NUMERADAS PARA ANÁLISIS

EQUIPO MICROCENTRIFUGA USADA PARA ANÁLISIS
BALANZA UTILIZADA PARA EL PROCESO DE PESAJE DE LOS ANIMALES DE EXPERIMENTACIÓN

PROCESO DE TAMIZAJE FITOQUÍMICO
MUESTRA DE HECES DE LOS ANIMALES DE EXPERIMENTACION A LOS 10 DIAS DE INICIADA LA DIETA HIPERCOLESTEROLEMICA (SE OBSERVA EL CAMBIO DE CONSISTENCIA Y COLOR)

MUESTRA DE HECES DE LOS ANIMALES DE EXPERIMENTACION EN LA ULTIMA FASE DEL TRATAMIENTO (SE OBSERVA LA MEJORIA EN LA APARIENCIA, CONSISTENCIA Y OLOR)
EXPENDIO DEL PRODUCTO EN DISTINTOS PUESTOS DEL CENTRO DE ABASTOS “EL ALTIPLANO” – AREQUIPA
<table>
<thead>
<tr>
<th>ENUNCIADOS SECUNDARIOS</th>
<th>OBJETIVOS ESPECÍFICOS</th>
<th>HIPÓTESIS ESPECÍFICAS</th>
<th>VARIABLES</th>
<th>METODOLOGÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Es posible inducir hiperlipidemia a ratas albinas?</td>
<td>Inducir hiperlipidemia a ratas albinas.</td>
<td>Se indujo hiperlipidemia en ratas albinas.</td>
<td>VARIABLE DEPENDIENTE: Efecto hiperlipemante</td>
<td></td>
</tr>
<tr>
<td>¿Hay presencia de metabolitos secundarios en semillas de chía negra y chía blanca?</td>
<td>Realizar una marcha fisiológica para identificar la presencia de metabolitos secundarios en semillas de chía negra y chía blanca.</td>
<td>Se identificó satisfactoriamente la presencia de metabolitos secundarios en semillas de chía negra y chía blanca.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿Tendrá efecto hiperlipemante las semillas de chía blanca frente a dislipidemia?</td>
<td>Determinar el efecto hiperlipemante de las semillas de chía blanca, frente a la dislipidemia.</td>
<td>Existe un moderado efecto hiperlipemante de las semillas de chía blanca, frente a dislipidemia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿Tendrá efecoto hiperlipemante las semillas de chía negra frente a dislipidemia?</td>
<td>Determinar el efecto hiperlipemante de las semillas de chía negra, frente a la dislipidemia.</td>
<td>Existe un leve efecto hiperlipemante de las semillas de chía negra, frente a dislipidemia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿Existe diferencia estadísticamente significativa en el efecto hiperlipemante de la chía blanca y negra frente a la dislipidemia inducida en ratas albinas a la misma dosis?</td>
<td>Determinar estadisticamente la diferencia significativa en el efecto hiperlipemante de la chía blanca y negra frente a la dislipidemia inducida en ratas albinas a la misma dosis.</td>
<td>Existe diferencia estadísticamente significativa entre el efecto hiperlipemante de la chía blanca y negra a una misma dosis.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANEXO 2 MATRIZ DE CONSISTENCIA

<table>
<thead>
<tr>
<th>FORMULACIÓN DEL PROBLEMA</th>
<th>OBJETIVOS</th>
<th>HIPÓTESIS</th>
<th>VARIABLES</th>
<th>METODOLOGÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBLEMA GENERAL</td>
<td>OBJETIVO GENERAL</td>
<td>Comparar el efecto hiperlipemante de las semillas de chía (Salvia hispanica L.), blanca y negra en ratas albinas (Rattus norvegicus Wistar) frente a la dislipidemia inducida.</td>
<td>Existe diferencia en el efecto hiperlipemante frente a la dislipidemia inducida en ratas albinas (Rattus norvegicus Wistar), entre la chía blanca y la chía negra.</td>
<td>VARIABLE INDEPENDIENTE: Semillas de Chía blanca y negra.</td>
</tr>
</tbody>
</table>

TÉCNICAS/INSTRUMENTOS

- Observación científica directa estructurada.
- Método enzimático colorimétrico.
- Fichaje para el registro de resultados de los análisis de perfil lipídico.

Técnicas Estadísticas

- Análisis, cuadros de frecuencias, gráficos, tablas, figuras.

INSTRUMENTOS:

- Ficha de recolección de datos donde se consigne los siguientes datos:
- Duración de tratamiento
- Medicación de colesterol total
- Medicación de triglicéridos
- Intervalo de dosis
- Sujeto de experimentación.

MÉTODO DE LA INVESTIGACIÓN

Durante el proceso de investigación para demostrar y comprobar la hipótesis se aplicará el método: Comparativo.- A través de este método, se hará una comparación entre las variedades de la semilla de chía.

DISEÑO DE LA INVESTIGACIÓN: Experimental

MUESTREO

UNIDAD VEGETAL

Semillas de Salvia hispanica L. (Chía), adquiridas del centro de abastos Feria del Altiplano de la ciudad de Arequipa, cultivadas en el Valle de Majes en Arequipa.

UNIDAD ANIMAL

La muestra animal está constituida por 15 animales de experimentación correspondientes a la especie (Rattus norvegicus Wistar) machos. Los cuales se separaron en 3 grupos de 5 animales aleatoriamente.