Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • Enviar tesis
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cabana Yupanqui, Silvana Beatriz"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • ItemOpen Access
    Análisis predictivo del rendimiento académico en los alumnos de la escuela profesional de ingeniería en informática y sistemas de la UNJBG, utilizando redes neuronales semestre 2017-I
    (Universidad Nacional Jorge Basadre Grohmann, 2018) Cabana Yupanqui, Silvana Beatriz; Hinojosa Ramos, Edwin Antonio
    El propósito de la tesis denominada: “Análisis Predictivo del Rendimiento Académico en los Alumnos de la Escuela Profesional de Ingeniería en Informática y Sistemas de la UNJBG, utilizando Redes Neuronales, Semestre 2017-I” se centró en aprovechar la capacidad predictiva de las redes de neuronales artificiales para analizar el rendimiento académico en base a las puntuaciones por asignatura en el exámen de admisión a la Universidad. El diseño de la investigación es no experimental descriptivo, se realiza la construcción de una red neuronal acorde a las especificaciones de las entradas y salidas de nuestro conjunto de datos que comprende de las respuestas correctas que tuvo en el Examen de Admisión y el promedio de notas del alumno en el primer ciclo de su carrera universitaria, basándonos en el aprendizaje supervisado con el algoritmo de Repropagación en perceptrón multicapa. En los resultados de la investigación observamos un entrenamiento satisfactorio de la red neuronal artificial con el algoritmo supervisado de retropropagación donde se obtuvo error menor al 5 %, un error cuadrático medio de 6,2 % en la fase de validación de la red y en el análisis de sensibilidad de la red neuronal se tuvo que las áreas de Razonamiento Matemático, Aritmética y Algebra y Razonamiento Verbal influyen positivamente en un 0,59; 0,13 y 0,09 respectivamente al rendimiento académico en los alumnos del primer semestre de la Escuela Profesional de Ingeniería en Informática y Sistemas.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback